Competitive Programming 3

The New Lower Bound of Programming Contests.

T
LA

Steven Halimm
Felix Halim

HANDBOOEK FOR ACM ICPC AND IOI CONTESTANTS
2013

Contents

Foreword

Preface

Authors’ Profiles

List of Abbreviations

List of Tables

List of Figures

1 Introduction

1.1
1.2

1.3

14
1.5
1.6

Competitive Programming
Tips to be Competitive
1.2.1 Tip 1: Type Code Faster!
1.2.2 Tip 2: Quickly Identify Problem Types
1.2.3 Tip 3: Do Algorithm Analysis
1.2.4 Tip 4: Master Programming Languages
1.2.5 Tip 5: Master the Art of Testing Code
1.2.6 Tip 6: Practice and More Practice
1.2.7 Tip 7: Team Work (for ICPC)
Getting Started: The Easy Problems
1.3.1 Anatomy of a Programming Contest Problem
1.3.2 Typical Input/Output Routines
1.3.3 Time to Start the Journey
The Ad Hoc Problems
Solutions to Non-Starred Exercises
Chapter Notes e

2 Data Structures and Libraries

2.1
2.2
2.3
24

2.5
2.6

Overview and Motivation
Linear DS with Built-in Libraries
Non-Linear DS with Built-in Libraries
Data Structures with Our Own Libraries
241 Graph
2.4.2 Union-Find Disjoint Sets
2.4.3 Segment Tree
2.4.4 Binary Indexed (Fenwick) Tree
Solution to Non-Starred Exercises
Chapter Notes

vi

viii

Xix

XX

xx1

xxii

O

13
15
16
16
16
17
19
21
27
32

CONTENTS (© Steven & Felix

3 Problem Solving Paradigms 69
3.1 Overview and Motivation L 69
3.2 Complete Search 70

3.2.1 Iterative Complete Search 71
3.2.2 Recursive Complete Search 74
323 Tips 76
3.3 Divide and Conquer 84
3.3.1 Interesting Usages of Binary Search 84
34 Greedy 89
34.1 Examples 89
3.5 Dynamic Programming oo 95
3.5.1 DP Ilustration 95
3.5.2 Classical Examples 103
3.5.3 Non-Classical Examples 112
3.6 Solution to Non-Starred Exercises 118
3.7 Chapter Notes 120

4 Graph 121
4.1 Overview and Motivation 121
4.2 Graph Traversal 122

4.2.1 Depth First Search (DFS) 122
4.2.2 Breadth First Search (BFS) 123
4.2.3 Finding Connected Components (Undirected Graph) 125
4.2.4 Flood Fill - Labeling/Coloring the Connected Components 125
4.2.5 Topological Sort (Directed Acyclic Graph) 126
4.2.6 Bipartite Graph Check oL 128
4.2.7 Graph Edges Property Check via DFS Spanning Tree 128
4.2.8 Finding Articulation Points and Bridges (Undirected Graph) 130
4.2.9 Finding Strongly Connected Components (Directed Graph) 133
4.3 Minimum Spanning Tree L 138
4.3.1 Overview and Motivation 138
4.3.2 Kruskal’s Algorithm 138
4.3.3 Prim’s Algorithm 139
4.3.4 Other Applications 141
4.4 Single-Source Shortest Paths 0oL 146
4.4.1 Overview and Motivation 146
4.4.2 SSSP on Unweighted Graph 146
4.4.3 SSSP on Weighted Graph 148
4.4.4 SSSP on Graph with Negative Weight Cycle 151
4.5 All-Pairs Shortest Paths 155
4.5.1 Overview and Motivation 155
4.5.2 Explanation of Floyd Warshall’s DP Solution 156
4.5.3 Other Applications 158
4.6 Network Flow 163
4.6.1 Overview and Motivation 163
4.6.2 Ford Fulkerson’s Method 163
4.6.3 Edmonds Karp’s Algorithm 164
4.6.4 Flow Graph Modeling - Part 1. 166
4.6.5 Other Applications 167
4.6.6 Flow Graph Modeling - Part 2. 168

ii

CONTENTS (© Steven & Felix

4.7 Special Graphs 171
4.7.1 Directed Acyclic Graph o 171
4.7.2 Tree 178
4.7.3 Eulerian Graph 179
4.7.4 Bipartite Graph 180

4.8 Solution to Non-Starred Exercises 187

4.9 Chapter Notes 190

5 Mathematics 191

5.1 Overview and Motivationo 191

5.2 Ad Hoc Mathematics Problems 192

5.3 Java Biglnteger Class 198
5.3.1 Basic Features. 198
5.3.2 Bonus Features 199

54 Combinatorics 204
5.4.1 Fibonacci Numbers 204
5.4.2 Binomial Coefficients 205
5.4.3 Catalan Numbers 205
5.4.4 Remarks about Combinatorics in Programming Contests 206

5.5 Number Theory 210
5.5.1 Prime Numbers 210
5.5.2 Greatest Common Divisor & Least Common Multiple 211
5.5.3 Factorial 212
5.5.4 Finding Prime Factors with Optimized Trial Divisions 212
5.5.5 Working with Prime Factors 213
5.5.6 Functions Involving Prime Factors 214
5.5.7 Modified Sieve 216
5.5.8 Modulo Arithmetic 216
5.5.9 Extended Euclid: Solving Linear Diophantine Equation 217
5.5.10 Remarks about Number Theory in Programming Contests 217

5.6 Probability Theory 221

5.7 Cycle-Finding 223
5.7.1 Solution(s) using Efficient Data Structure 223
5.7.2 Floyd’s Cycle-Finding Algorithm, 223

5.8 Game Theory 226
5.8.1 Decision Tree 226
5.8.2 Mathematical Insights to Speed-up the Solution 227
583 Nim Game 228

5.9 Solution to Non-Starred Exercises 229

5.10 Chapter Notes 231

6 String Processing 233

6.1 Overview and Motivation 233

6.2 Basic String Processing Skills oL 234

6.3 Ad Hoc String Processing Problems 236

6.4 String Matching 241
6.4.1 Library Solutions 241
6.4.2 Knuth-Morris-Pratt’s (KMP) Algorithm 241
6.4.3 String Matching in a 2D Grido 244

6.5 String Processing with Dynamic Programming 245

il

CONTENTS (© Steven & Felix

6.5.1 String Alignment (Edit Distance) 245
6.5.2 Longest Common Subsequence 247
6.5.3 Non Classical String Processing with DP 247

6.6 Suffix Trie/Tree/Array 249
6.6.1 Suffix Trie and Applications, 249
6.6.2 Suffix Tree 250
6.6.3 Applications of Suffix Tree 251
6.6.4 Suffix Array 253
6.6.5 Applications of Suffix Array 258

6.7 Solution to Non-Starred Exercises 264
6.8 Chapter Notes 267
7 (Computational) Geometry 269
7.1 Overview and Motivation 269
7.2 Basic Geometry Objects with Libraries 271
7.2.1 0D Objects: Points 271
7.2.2 1D Objects: Lines 272
7.2.3 2D Objects: Circles 276
7.2.4 2D Objects: Triangles oo oL 278
7.2.5 2D Objects: Quadrilaterals. 281

7.3 Algorithm on Polygon with Libraries 285
7.3.1 Polygon Representation 285
7.3.2 Perimeter of a Polygon o000 285
733 AreaofaPolygon. 285
7.3.4 Checking if a Polygon is Convex 286
7.3.5 Checking if a Point is Inside a Polygon 287
7.3.6 Cutting Polygon with a Straight Line 288
7.3.7 Finding the Convex Hull of a Set of Points 289

7.4 Solution to Non-Starred Exercises 294
7.5 Chapter Notes e 297
8 More Advanced Topics 299
8.1 Overview and Motivation 299
8.2 More Advanced Search Techniques 299
8.2.1 Backtracking with Bitmask 0. 299
8.2.2 DBacktracking with Heavy Pruning 304
8.2.3 State-Space Search with BFS or Dijkstra’s 305
8.2.4 Meet in the Middle (Bidirectional Search) 306
8.2.5 Informed Search: A* and IDA* 308

8.3 More Advanced DP Techniques 312
8.3.1 DP with Bitmask 312
8.3.2 Compilation of Common (DP) Parameters 313
8.3.3 Handling Negative Parameter Values with Offset Technique 313
8.3.4 MLE? Consider Using Balanced BST as Memo Table 315
8.3.5 MLE/TLE? Use Better State Representation 315
8.3.6 MLE/TLE? Drop One Parameter, Recover It from Others 316

8.4 Problem Decomposition L 320
8.4.1 Two Components: Binary Search the Answer and Other 320
8.4.2 Two Components: Involving 1D Static RSQ/RMQ 322
8.4.3 Two Components: Graph Preprocessing and DP 322

iv

CONTENTS (© Steven & Felix

8.4.4 Two Components: Involving Graph 324
8.4.5 Two Components: Involving Mathematics 324
8.4.6 Two Components: Complete Search and Geometry 324
8.4.7 Two Components: Involving Efficient Data Structure 324
8.4.8 Three Components 325

8.5 Solution to Non-Starred Exercises 332
8.6 Chapter Notes 333
9 Rare Topics 335
9.1 2-SAT Problem 336
9.2 Art Gallery Problem 338
9.3 Bitonic Traveling Salesman Problem 339
9.4 Bracket Matching 341
9.5 Chinese Postman Problem 342
9.6 Closest Pair Problem 343
9.7 Dinic’s Algorithm 344
9.8 Formulas or Theorems 345
9.9 Gaussian Elimination Algorithm 346
9.10 Graph Matching 349
9.11 Great-Circle Distance 352
9.12 Hopcroft Karp’s Algorithm 353
9.13 Independent and Edge-Disjoint Paths 354
9.14 Inversion Index 355
9.15 Josephus Problem 356
9.16 Knight Moves 357
9.17 Kosaraju’s Algorithm 358
9.18 Lowest Common Ancestor 359
9.19 Magic Square Construction (Odd Size) 361
9.20 Matrix Chain Multiplication 362
9.21 Matrix Power 364
9.22 Max Weighted Independent Set 368
9.23 Min Cost (Max) Flow. 369
9.24 Min Path Cover on DAG 370
9.25 Pancake Sorting 371
9.26 Pollard’s rho Integer Factoring Algorithm 374
9.27 Postfix Calculator and Conversion 376
9.28 Roman Numerals 378
9.29 Selection Problem 380
9.30 Shortest Path Faster Algorithm 383
9.31 Sliding Window 384
9.32 Sorting in Linear Time L oo 386
9.33 Sparse Table Data Structure 388
9.34 Tower of Hanoi 390
9.35 Chapter Notes 391
A uHunt 393
B Credits 396
Bibliography 398

CONTENTS (© Steven & Felix

Foreword

A long time ago (on the 11*" of November in 2003, Tuesday, 3:55:57 UTC), I received an
e-mail with the following message:

“I should say in a simple word that with the UVa Site, you have given birth to
a new CIVILIZATION and with the books you write (he meant “Programming
Challenges: The Programming Contest Training Manual” [60], coauthored with
Steven Skiena), you inspire the soldiers to carry on marching. May you live long
to serve the humanity by producing super-human programmers.”

Although that was clearly an exaggeration, it did cause me to think. I had a dream: to
create a community around the project I had started as a part of my teaching job at UVa,
with people from all around the world working together towards the same ideal. With a
little searching, I quickly found a whole online community running a web-ring of sites with
excellent tools that cover and provide whatever the UVa site lacked.

To me, ‘Methods to Solve’” by Steven Halim, a very young student from Indonesia, was
one of the more impressive websites. I was inspired to believe that the dream would become
real one day, because in this website lay the result of the hard work of a genius of algorithms
and informatics. Moreover, his declared objectives matched the core of my dream: to serve
humanity. Even better, he has a brother with similar interests and capabilities, Felix Halim.

It’s a pity that it takes so much time to start a real collaboration, but life is like that.
Fortunately, all of us have continued working together in a parallel fashion towards the
realization of that dream—the book that you have in your hands now is proof of that.

I can’t imagine a better complement for the UVa Online Judge. This book uses lots of
examples from UVa carefully selected and categorized both by problem type and solving
technique, providing incredibly useful help for the users of the site. By mastering and
practicing most programming exercises in this book, a reader can easily solve at least 500
problems in the UVa Online Judge, which will place them in the top 400-500 amongst
~100000 UVa OJ users.

It’s clear that the book “Competitive Programming: Increasing the Lower Bound of
Programming Contests” is suitable for programmers who want to improve their ranks in
upcoming ICPC regionals and 10Is. The two authors have gone through these contests
(ICPC and IOI) themselves as contestants and now as coaches. But it’s also an essential
colleague for newcomers—as Steven and Felix say in the introduction ‘the book is not meant
to be read once, but several times’.

Moreover, it contains practical C++ source code to implement given algorithms. Un-
derstanding a problem is one thing, but knowing the algorithm to solve it is another, and
implementing the solution well in short and efficient code is tricky. After you have read this
extraordinary book three times you will realize that you are a much better programmer and,
more importantly, a happier person.

vi

CONTENTS (© Steven & Felix

Ty

finline Judge ‘ iy
nling / |
2 f;ff Rlnhmz Judge

g Judge

“-

L-R: Fredrik Niemela, Carlos; Miguel Rewlla Miguel Jr, Felix, Steven

—

Miguel A. Revilla, University of Valladolid

UVa Online Judge site creator;

ACM-ICPC International Steering Committee Member and Problem Archivist
http://uva.onlinejudge.org; http://livearchive.onlinejudge.org

vii

CONTENTS (© Steven & Felix

Preface

This book is a must have for every competitive programmer. Mastering the contents of
this book is a necessary (but maybe not sufficient) condition if one wishes to take a leap
forward from being just another ordinary coder to being among one of the world’s finest
programuers.

Typical readers of this book would include:

1. University students who are competing in the annual ACM International Collegiate
Programming Contest (ICPC) [66] Regional Contests (including the World Finals),

2. Secondary or High School Students who are competing in the annual International
Olympiad in Informatics (IOI) [34] (including the National or Provincial Olympiads),

3. Coaches who are looking for comprehensive training materials for their students [24],

4. Anyone who loves solving problems through computer programs. There are numer-
ous programming contests for those who are no longer eligible for ICPC, including
TopCoder Open, Google CodeJam, Internet Problem Solving Contest (IPSC), etc.

Prerequisites

This book is not written for novice programmers. This book is aimed at readers who have
at least basic knowledge in programming methodology, are familiar with at least one of
these programming languages (C/C++ or Java, preferably both), have passed a basic data
structures and algorithms course (typically taught in year one of Computer Science university
curricula), and understand simple algorithmic analysis (at least the big-O notation). In
the third edition, more content has been added so that this book can also be used as a
supplementary reading for a basic Data Structures and Algorithms course.

To ACM ICPC Contestants

ICPC | University
2012 | of Warsaw

Steven Halim

viil

CONTENTS (© Steven & Felix

We know that one cannot probably win the ACM ICPC regional just by mastering the
contents of the current version (third edition) of this book. While we have included a lot of
materials in this book—much more than in the first two editions—we are aware that much
more than what this book can offer is required to achieve that feat. Some additional pointers
to useful references are listed in the chapter notes for readers who are hungry for more. We
believe, however, that your team will fare much better in future ICPCs after mastering the
contents of this book. We hope that this book will serve as both inspiration and motivation
for your 3-4 year journey competing in ACM ICPCs during your University days.

To I0I Contestants

L-R: Daniel, Mr Cheong, Raymond, Ste land, Chuangqgi

Much of our advice for ACM ICPC contestants applies to you too. The ACM ICPC and 101
syllabi are largely similar, except that 101, for now, currently excludes the topics listed in
the following Table 1. You can skip these items until your university years (when you join
that university’s ACM ICPC teams). However, learning these techniques in advance may
definitely be beneficial as some tasks in IOI can become easier with additional knowledge.
We know that one cannot win a medal in IOl just by mastering the contents of the
current version (third edition) of this book. While we believe that many parts of the 101
syllabus has been included in this book—hopefully enabling you to achieve a respectable
score in future IOIs—we are well aware that modern 101 tasks require keen problem solving
skills and tremendous creativity—virtues that we cannot possibly impart through this static
textbook. This book can provide knowledge, but the hard work must ultimately be done by
you. With practice comes experience, and with experience comes skill. So, keep practicing!

Topic In This Book

Data Structures: Union-Find Disjoint Sets Section 2.4.2

Graph: Finding SCCs, Network Flow, Bipartite Graphs Section 4.2.1, 4.6.3, 4.7.4
Math: Biglnteger, Probability Theory, Nim Games Section 5.3, 5.6, 5.8
String Processing: Suffix Trees/Arrays Section 6.6

More Advanced Topics: A*/IDA* Section 8.2

Many of the Rare Topics Chapter 9

Table 1: Not in 101 Syllabus [20] Yet

ix

CONTENTS (© Steven & Felix

To Teachers and Coaches

This book is used in Steven’s CS3233 - ‘Competitive Programming’ course in the School
of Computing at the National University of Singapore. CS3233 is conducted in 13 teaching
weeks using the following lesson plan (see Table 2). The PDF slides (only the public version)
are given in the companion web site of this book. Fellow teachers/coaches should feel free to
modify the lesson plan to suit students’ needs. Hints or brief solutions of the non-starred
written exercises in this book are given at the back of each chapter. Some of the starred
written exercises are quite challenging and have neither hints nor solutions. These can
probably be used as exam questions or contest problems (of course, solve them first!).

This book is also used as a supplementary reading in Steven’s CS2010 - ‘Data Struc-
tures and Algorithms’ course, mostly for the implementation of several algorithms and writ-
ten/programming exercises.

Wk | Topic In This Book

01 | Introduction Ch 1, Sec 2.2, 5.2, 6.2-6.3, 7.2
02 | Data Structures & Libraries Chapter 2

03 | Complete Search, Divide & Conquer, Greedy | Section 3.2-3.4; 8.2

04 | Dynamic Programming 1 (Basic ideas) Section 3.5; 4.7.1

05 | Dynamic Programming 2 (More techniques) | Section 5.4; 5.6; 6.5; 8.3

06 | Mid-Semester Team Contest Chapter 1 - 4; parts of Ch 9
- Mid-Semester Break (homework)

07 | Graph 1 (Network Flow) Section 4.6; parts of Ch 9

08 | Graph 2 (Matching) Section 4.7.4; parts of Ch 9
09 | Mathematics (Overview) Chapter 5

10 | String Processing (Basic skills, Suffix Array) | Chapter 6

11 | (Computational) Geometry (Libraries) Chapter 7

12 | More Advanced Topics Section 8.4; parts of Ch 9

13 | Final Team Contest Chapter 1-9 and maybe more
- No final exam -

Table 2: Lesson Plan of Steven’s CS3233

For Data Structures and Algorithms Courses

The contents of this book have been expanded in this edition so that the first four chapters of
this book are more accessible to first year Computer Science students. Topics and exercises
that we have found to be relatively difficult and thus unnecessarily discouraging for first
timers have been moved to the now bulkier Chapter 8 or to the new Chapter 9. This way,
students who are new to Computer Science will perhaps not feel overly intimidated when
they peruse the first four chapters.

Chapter 2 has received a major update. Previously, Section 2.2 was just a casual list
of classical data structures and their libraries. This time, we have expanded the write-up
and added lots of written exercises so that this book can also be used to support a Data
Structures course, especially in the terms of implementation details.

The four problem solving paradigms discussed in Chapter 3 appear frequently in typical
Algorithms courses. The text in this chapter has been expanded and edited to help new
Computer Science students.

CONTENTS (© Steven & Felix

Parts of Chapter 4 can also be used as a supplementary reading or implementation guide
to enhance a Discrete Mathematics [57, 15| or a basic Algorithms course. We have also
provide some new insights on viewing Dynamic Programming techniques as algorithms on
DAGs. Such discussion is currently still regrettably uncommon in many Computer Science
textbooks.

To All Readers

Due to its diversity of coverage and depth of discussion, this book is not meant to be
read once, but several times. There are many written (& 238) and programming exercises
(= 1675) listed and spread across almost every section. You can skip these exercises at
first if the solution is too difficult or requires further knowledge and technique, and revisit
them after studying other chapters of this book. Solving these exercises will strengthen
your understanding of the concepts taught in this book as they usually involve interesting
applications, twists or variants of the topic being discussed. Make an effort to attempt
them—time spent solving these problems will definitely not be wasted.

We believe that this book is and will be relevant to many university and high school
students. Programming competitions such as the ICPC and IOI are here to stay, at least
for many years ahead. New students should aim to understand and internalize the basic
knowledge presented in this book before hunting for further challenges. However, the term
‘basic” might be slightly misleading—yplease check the table of contents to understand what
we mean by ‘basic’.

As the title of this book may imply, the purpose of this book is clear: We aim to
improve everyone’s programming abilities and thus increase the lower bound of programming
competitions like the ICPC and IOI in the future. With more contestants mastering the
contents of this book, we hope that the year 2010 (when the first edition of this book was
published) will be a watershed marking an accelerated improvement in the standards of
programming contests. We hope to help more teams solve more (> 2) problems in future
ICPCs and help more contestants to achieve greater (> 200) scores in future I0Is. We also
hope to see many ICPC and 101 coaches around the world (especially in South East Asia)
adopt this book for the aid it provides in mastering topics that students cannot do without
in competitive programming contests. If such a proliferation of the required ‘lower-bound’
knowledge for competitive programming is achieved, then this book’s primary objective of
advancing the level of human knowledge will have been fulfilled, and we, as the authors of
this book, will be very happy indeed.

Convention

There are lots of C/C++ code and also some Java code (especially in Section 5.3) included
in this book. If they appear, they will be typeset in this monospace font.

For the C/C++ code in this book, we have adopted the frequent use of typedefs and
macros—features that are commonly used by competitive programmers for convenience,
brevity, and coding speed. However, we cannot use similar techniques for Java as it does
not contain similar or analogous features. Here are some examples of our C/C++ code
shortcuts:

// Suppress some compilation warning messages (only for VC++ users)
#define _CRT_SECURE_NO_DEPRECATE

xi

CONTENTS (© Steven & Felix

// Shortcuts for "common" data types in contests

typedef long long 11; // comments that are mixed in with code
typedef pair<int, int> ii; // are aligned to the right like this
typedef vector<ii> vii;
typedef vector<int> vi;
#define INF 1000000000 // 1 billion, safer than 2B for Floyd Warshall’s

// Common memset settings
//memset (memo, -1, sizeof memo); // initialize DP memoization table with -1
//memset (arr, 0, sizeof arr); // to clear array of integers

// We have abandoned the use of "REP" and "TRvii" since the second edition
// in order to reduce the confusion encountered by new programmers

The following shortcuts are frequently used in both our C/C++ and Java code:

// ans = a ? b : c; // to simplify: if (a) ans = b; else ans = c;
// ans += val; // to simplify: ans = ans + val; and its variants
// index = (index + 1) % n; // index++; if (index >= n) index = O;
// index = (index + n - 1) % n; // index--; if (index < 0) index = n - 1;
// int ans = (int) ((double)d + 0.5); // for rounding to nearest integer
// ans = min(ans, new_computation); // min/max shortcut

// alternative form but not used in this book: ans <?= new_computation;
// some code use short circuit && (AND) and || (OR)

Problem Categorization

As of 24 May 2013, Steven and Felix—combined—have solved 1903 UVa problems (= 46.45%
of the entire UVa problemset). About ~ 1675 of them are discussed and categorized in this
book. Since late 2011, some Live Archive problems have also been integrated in the UVa
Online Judge. In this book, we use both problem numberings, but the primary sort key used
in the index section of this book is the UVa problem number.

These problems are categorized according to a ‘load balancing’ scheme: If a problem can
be classified into two or more categories, it will be placed in the category with a lower number
of problems. This way, you may find that some problems have been ‘wrongly’ categorized,
where the category that it appears in might not match the technique that you have used to
solve it. We can only guarantee that if you see problem X in category Y, then you know
that we have managed to solve problem X with the technique mentioned in the section that
discusses category Y.

We have also limited each category to at most 25 (TWENTY FIVE) problems, splitting
them into separate categories when needed.

If you need hints for any of the problems (that we have solved), flip to the handy index
at the back of this book instead of flipping through each chapter—it might save you some
time. The index contains a list of UVa/LA problems, ordered by their problem number (do
a binary search!) and augmented by the pages that contain discussion of said problems (and
the data structures and/or algorithms required to solve that problem). In the third edition,
we allow the hints to span more than one line so that they can be more meaningful.

Utilize this categorization feature for your training! Solving at least a few problems
from each category (especially the ones we have highlighted as must try *) is a great way
to diversify your problem solving skillset. For conciseness, we have limited ourselves to a
maximum of 3 highlights per category.

xii

CONTENTS (© Steven & Felix

Changes for the Second Edition

There are substantial changes between the first and the second edition of this book. As
the authors, we have learned a number of new things and solved hundreds of programming
problems during the one year gap between these two editions. We also have received feedback
from readers, especially from Steven’s CS3233 class Sem 2 AY2010/2011 students, and have
incorporated these suggestions in the second edition.

Here is a summary of the important changes for the second edition:

The first noticeable change is the layout. We now have a greater information density
on each page. The 2°¢ edition uses single line spacing instead of the 1.5 line spacing
used in the 1% edition. The positioning of small figures is also enhanced so that we
have a more compact layout. This is to avoid increasing the number of pages by too
much while still adding more content.

Some minor bugs in our code examples (both the ones displayed in the book and the
soft copies provided in the companion web site) have been fixed. All code samples now
have much more meaningful comments to aid in comprehension.

Several language-related issues (typographical, grammatical or stylistic) have been
corrected.

Besides enhancing the discussion of many data structures, algorithms, and program-
ming problems; we have also added these new materials in each chapter:

1. Many new Ad Hoc problems to kick start this book (Section 1.4).

2. A lightweight set of Boolean (bit-manipulation) techniques (Section 2.2), Implicit
Graphs (Section 2.4.1), and Fenwick Tree data structures (Section 2.4.4).

3. More DP: A clearer explanation of bottom-up DP, the O(nlog k) solution for the
LIS problem, the 0-1 Knapsack/Subset Sum, and DP TSP (using the bitmask
technique) (Section 3.5.2).

4. A reorganization of the graph material into: Graph Traversal (both DFS and
BFS), Minimum Spanning Tree, Shortest Paths (Single-Source and All-Pairs),
Maximum Flow, and Special Graphs. New topics include Prim’s MST algorithm,
a discussion of DP as a traversal on implicit DAGs (Section 4.7.1), Eulerian
Graphs (Section 4.7.3), and the Augmenting Path algorithm (Section 4.7.4).

5. A reorganization of mathematical techniques (Chapter 5) into: Ad Hoc, Java
BigInteger, Combinatorics, Number Theory, Probability Theory, Cycle-Finding,
Game Theory (new), and Powers of a (Square) Matrix (new). Each topic has
been rewritten for clarity.

6. Basic string processing skills (Section 6.2), more string-related problems (Section
6.3), including string matching (Section 6.4), and an enhanced Suffix Tree/Array
explanation (Section 6.6).

7. More geometry libraries (Chapter 7), especially on points, lines and polygons.

8. A new Chapter 8, which contains discussion on problem decomposition, advanced
search techniques (A*, Depth Limited Search, Iterative Deepening, IDA*), ad-
vanced DP techniques (more bitmask techniques, the Chinese Postman Problem,
a compilation of common DP states, a discussion of better DP states, and some
harder DP problems).

xiii

CONTENTS (© Steven & Felix

e Many existing figures in this book have been redrawn and enhanced. Many new figures
have been added to help explain the concepts more clearly.

e The first edition is mainly written using from the viewpoint of the ICPC contestant and
C++ programmer. The second edition is written to be more balanced and includes
the TOI perspective. Java support is also strongly enhanced in the second edition.
However, we do not support any other programming languages as of yet.

e Steven’s ‘Methods to Solve’ website has now been fully integrated in this book in the
form of ‘one liner hints’ for each problem and the useful problem index at the back
of this book. Now, reaching 1000 problems solved in UVa online judge is no longer
a wild dream (we believe that this feat is doable by a serious 4-year CS university
undergraduate).

e Some examples in the first edition use old programming problems. In the second
edition, these examples have been replaced/added with newer examples.

e ~ (600 more programming exercises from the UVa Online Judge and Live Archive have
been solved by Steven & Felix and added to this book. We have also added many more
written exercises throughout the book with hints/short solutions as appendices.

e Short profiles of data structure/algorithm inventors have been adapted from Wikipedia
[71] or other sources for this book. It is nice to know a little bit more about these
inventors.

Changes for the Third Edition

We gave ourselves two years (skipping 2012) to prepare a substantial number of improvements
and additional materials for the third edition of this book. Here is the summary of the
important changes for the third edition:

e The third edition now uses a slightly larger font size (12 pt) compared to second edition
(11 pt), a 9 percent increase. Hopefully many readers will find the text more readable
this time. We also use larger figures. These decisions, however, have increased the
number of pages and rendered the book thicker. We have also adjusted the left /right
margin in odd/even pages to increase readability.

e The layout has been changed to start almost every section on a new page. This is to
make the layout far easier to manage.

e We have added many more written exercises throughout the book and classifed them
into non-starred (for self-checking purposes; hints/solutions are at the back of each
chapter) and starred * versions (for extra challenges; no solution is provided). The
written exercises have been placed close to the relevant discussion in the body text.

e ~ 477 more programming exercises from the UVa Online Judge and Live Archive have
been solved by Steven & Felix and consequently added to this book. We thus have
maintained a sizeable &~ 50% (to be precise, ~ 46.45%) coverage of UVa Online Judge
problems even as the judge has grown in the same period of time. These newer problems
have been listed in an italic font. Some of the newer problems have replaced older ones
as the must try problems. All programming exercises are now always placed at the
end of a section.

Xiv

CONTENTS (© Steven & Felix

e We now have proof that capable CS students can achieve > 500 AC problems (from 0)
in the UVa Ounline Judge in just one University semester (4 months) with this book.

e The new (or revised) materials, chapter by chapter:

1.

Chapter 1 contains a gentler introduction for readers who are new to competitive
programming. We have elaborated on stricter Input/Output (I/O) formats in
typical programming problems and common routines for dealing with them.

. We add one more linear data structure: ‘deque’ in Section 2.2. Chapter 2 now

contains a more detailed discussion of almost all data structures discussed in this
chapter, especially Section 2.3 and 2.4.

In Chapter 3, we have a more detailed discussions of various Complete Search
techniques: Nested loops, generating subsets/permutations iteratively, and recur-
sive backtracking. New: An interesting trick to write and print Top-Down DP
solutions, Discussion of Kadane’s algorithm for Max 1D Range Sum.

In Chapter 4, we have revised white/gray/black labels (legacy from [7]) to their
standard nomenclature, renaming ‘max flow’ to ‘network flow’ in the process. We
have also referred to the algorithm author’s actual scientific paper for a better
understanding of the original ideas of the algorithm. We now have new diagrams
of the implicit DAG in classical DP problems found in Section 3.5.

Chapter 5: We have included greater coverage of Ad Hoc mathematics prob-
lems, a discussion of an interesting Java Biglnteger operation: isProbablePrime,
added/expanded several commonly used Combinatorics formulae and modified
sieve algorithms, expanded/revised sections on Probability Theory (Section 5.6),
Cycle-finding (Section 5.7), and Game Theory (Section 5.8).

Chapter 6: We rewrite Section 6.6 to have a better explanation of Suffix Trie/Tree/
Array by reintroducing the concept of terminating character.

Chapter 7: We trim this chapter into two core sections and improve the library
code quality.

Chapter 8: The harder topics that were listed in Chapter 1-7 in the 2"¢ edition
have now been relocated to Chapter 8 (or Chapter 9 below). New: Discussion
of harder backtracking routine, State-Space search, meet in the middle, trick of
using balanced BST as memo table, and a more comprehensive section about
problem decomposition.

New Chapter 9: Various rare topics that appear once a while in programming
contests have been added. Some of them are easy, but many of them are hard
and can be somewhat important score determinants in programming contests.

Supporting Websites

This book has an official companion web site at sites.google.com/site/stevenhalim,
from which you can obtain a soft copy of sample source code and the (public/simpler version)
of the) PDF slides used in Steven’s CS3233 classes.

All programming exercises in this book are integrated in the uhunt.felix-halim.net tool
and can be found in the UVa Online Judge at uva.onlinejudge.org

New in the third edition: Many algorithms now have interactive visualizations at:
www.comp.nus.edu.sg/ stevenha/visualization

XV

CONTENTS (© Steven & Felix

Acknowledgments for the First Edition
From Steven: I want to thank

e God, Jesus Christ, and the Holy Spirit, for giving me talent and passion in competitive
programming.

e my lovely wife, Grace Suryani, for allowing me to spend our precious time for this
project.

e my younger brother and co-author, Felix Halim, for sharing many data structures,
algorithms, and programming tricks to improve the writing of this book.

e my father Lin Tjie Fong and mother Tan Hoey Lan for raising us and encouraging us
to do well in our study and work.

e the School of Computing, National University of Singapore, for employing me and
allowing me to teach the CS3233 - ‘Competitive Programming’ module from which
this book was born.

e NUS/ex-NUS professors/lecturers who have shaped my competitive programming and
coaching skills: Prof Andrew Lim Leong Chye, Assoc Prof Tan Sun Teck, Aaron Tan
Tuck Choy, Assoc Prof Sung Wing Kin, Ken, Dr Alan Cheng Holun.

e my friend IlTham Winata Kurnia for proof reading the manuscript of the first edition.

o fellow Teaching Assistants of CS3233 and ACM ICPC Trainers @ NUS: Su Zhan, Ngo
Minh Duc, Melvin Zhang Zhiyong, Bramandia Ramadhana.

e my (S3233 students in Sem2 AY2008/2009 who inspired me to come up with the
lecture notes and students in Sem2 AY2009/2010 who verified the content of the first
edition of this book and gave the initial Live Archive contribution

Acknowledgments for the Second Edition
From Steven: Additionally, I also want to thank

e the first ~ 550 buyers of the 1st edition as of 1 August 2011 (this number is no longer
updated). Your supportive responses encourage us!

xvi

CONTENTS (© Steven & Felix

e a fellow Teaching Assistant of CS3233 @ NUS: Victor Loh Bo Huai.

e my (CS3233 students in Sem2 AY2010/2011 who contributed in both technical and
presentation aspects of the second edition, in alphabetical order: Aldrian Obaja Muis,
Bach Ngoc Thanh Cong, Chen Juncheng, Devendra Goyal, Fikril Bahri, Hassan Ali
Askari, Harta Wijaya, Hong Dai Thanh, Koh Zi Chun, Lee Ying Cong, Peter Phandi,

Raymond Hendy Susanto, Sim Wenlong Russell, Tan Hiang Tat, Tran Cong Hoang,
Yuan Yuan, and one other student who prefers to be anonymous.

e the proof readers: Seven of CS3233 students above (underlined) plus Tay Wenbin.

e Last but not least, I want to re-thank my wife, Grace Suryani, for letting me do another
round of tedious book editing process while she was pregnant with our first baby: Jane
Angelina Halim.

Acknowledgments for the Third Edition

From Steven: Again, I want to thank

e the ~ 2000 buyers of the 2nd edition as of 24 May 2013 (this number is no longer
updated). Thanks :).

Jan-Apr 2012

xvii

CONTENTS (© Steven & Felix

e fellow Teaching Assistant of CS3233 @ NUS in the past two years: Harta Wijaya,
Trinh Tuan Phuong, and Huang Da.

e my (CS3233 students in Sem2 AY2011/2012 who contributed in both technical and
presentation aspects of the second edition of this book, in alphabetical order: Cao
Sheng, Chua Wei Kuan, Han Yu, Huang Da, Huynh Ngoc Tai, Ivan Reinaldo, John
Goh Choo Ern, Le Viet Tien, Lim Zhi Qin, Nalin Ilango, Nguyen Hoang Duy, Nguyen
Phi Long, Nguyen Quoc Phong, Pallav Shinghal, Pan Zhengyang, Pang Yan Han, Song
Yangyu, Tan Cheng Yong Desmond, Tay Wenbin, Yang Mansheng, Zhao Yang, Zhou
Yiming, and two other students who prefer to be anonymous.

e the proof readers: Six of CS3233 students in Sem2 AY2011/2012 (underlined) and
Hubert Teo Hua Kian.

e my (CS3233 students in Sem2 AY2012/2013 who contributed in both technical and
presentation aspects of the second edition of this book, in alphabetical order: Arnold
Christopher Koroa, Cao Luu Quang, Lim Puay Ling Pauline, Erik Alexander Qvick
Faxaa, Jonathan Darryl Widjaja, Nguyen Tan Sy Nguyen, Nguyen Truong Duy, Ong
Ming Hui, Pan Yuxuan, Shubham Goyal, Sudhanshu Khemka, Tang Binbin, Trinh
Ngoc Khanh, Yao Yujian, Zhao Yue, and Zheng Naijia.

Jan-ApE2013 §

e the NUS Centre for Development of Teaching and Learning (CDTL) for giving the
initial funding to build the algorithm visualization website.

e my wife Grace Suryani and my daughter Jane Angelina for your love in our family.

To a better future of humankind,
STEVEN and FELIX HALIM
Singapore, 24 May 2013

Copyright

No part of this book may be reproduced or transmitted in any form or by any means, elec-
tronically or mechanically, including photocopying, scanning, uploading to any information
storage and retrieval system.

xviii

CONTENTS (© Steven & Felix

Authors’ Profiles

Steven Halim, PhD'

stevenhalim@gmail.com

Steven Halim is currently a lecturer in
School of Computing, National University
of Singapore (SoC, NUS). He teaches sev-
eral programming courses in NUS, ranging
from basic programming methodology, inter-
mediate data structures and algorithms, and
also the ‘Competitive Programming’ module
that uses this book. He is the coach of both
the NUS ACM ICPC teams and the Singa-
pore 101 team. He participated in several
ACM ICPC Regional as student (Singapore |
2001, Aizu 2003, Shanghai 2004). So far,
he and other trainers @ NUS have success-
fully groomed two ACM ICPC World Final-
ist teams (2009-2010; 2012-2013) as well as
two gold, six silver, and seven bronze 101
medalists (2009-2012).

Steven is happily married with Grace
Suryani Tioso and currently has one daugh-
ter: Jane Angelina Halim.

Felix Halim, PhD?

felix.halim@gmail.com

Felix Halim now holds a PhD degree from SoC, NUS. In terms of
programming contests, Felix has a much more colourful reputation
than his older brother. He was IOI 2002 contestant (representing
Indonesia). His ICPC teams (at that time, Bina Nusantara Univer-
sity) took part in ACM ICPC Manila Regional 2003-2004-2005 and
obtained rank 10th, 6th, and 10th respectively. Then, in his final
year, his team finally won ACM ICPC Kaohsiung Regional 2006
and thus became ACM ICPC World Finalists @ Tokyo 2007 (44th
place). Today, he actively joins TopCoder Single Round Matches
and his highest rating is a yellow coder. He now works at Google,
Mountain View, United States of America.

'PhD Thesis: “An Integrated White+Black Box Approach for Designing and Tuning Stochastic Local
Search Algorithms”, 2009.
2PhD Thesis: “Solving Big Data Problems: from Sequences to Tables and Graphs”, 2012.

Xix

CONTENTS (© Steven & Felix
A_bbreviations LSB : Least Significant Bit
MCBM : Max Cardinality Bip Matching
MCM : Matrix Chain Multiplication
A* - A Star MCMF : Min-Cost Max-Flow

ACM : Assoc of Computing Machinery
AC : Accepted

APSP : All-Pairs Shortest Paths

AVL : Adelson-Velskii Landis (BST)

BNF : Backus Naur Form

BFS : Breadth First Search
BI : Big Integer

BIT : Binary Indexed Tree
BST : Binary Search Tree

CC : Coin Change

CCW : Counter ClockWise
CF : Cumulative Frequency
CH : Convex Hull

CS : Computer Science
CW : ClockWise

DAG : Directed Acyclic Graph
DAT : Direct Addressing Table
D&C : Divide and Conquer
DF'S : Depth First Search
DLS : Depth Limited Search
DP : Dynamic Programming
DS : Data Structure

ED : Edit Distance

FIFO : First In First Out
FT : Fenwick Tree

GCD : Greatest Common Divisor

ICPC : Intl Collegiate Prog Contest
IDS : Iterative Deepening Search
IDA* : Iterative Deepening A Star
IOI : Intl Olympiad in Informatics

IPSC : Internet Problem Solving Contest

LA : Live Archive [33]

LCA : Lowest Common Ancestor
LCM : Least Common Multiple

LCP : Longest Common Prefix

LCS; : Longest Common Subsequence
LCS, : Longest Common Substring
LIFO : Last In First Out

LIS : Longest Increasing Subsequence
LRS : Longest Repeated Substring

MIS : Maximum Independent Set

MLE : Memory Limit Exceeded

MPC : Minimum Path Cover

MSB : Most Significant Bit

MSSP : Multi-Sources Shortest Paths
MST : Minimum Spanning Tree
MWIS : Max Weighted Independent Set
MVC : Minimum Vertex Cover

OJ : Online Judge
PE : Presentation Error

RB : Red-Black (BST)

RMQ : Range Min (or Max) Query
RSQ : Range Sum Query

RTE : Run Time Error

SSSP : Single-Source Shortest Paths
SA : Suffix Array

SPOJ : Sphere Online Judge

ST : Suffix Tree

STL : Standard Template Library

TLE : Time Limit Exceeded

USACO : USA Computing Olympiad
UVa : University of Valladolid [47]

WA : Wrong Answer
WF : World Finals

XX

List of Tables

1.1
1.2
1.3
14

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

9.1
9.2
9.3
94

Not in IOI Syllabus [20] Yet o
Lesson Plan of Steven’s CS3233

Recent ACM ICPC (Asia) Regional Problem Types
Problem Types (Compact Form)
Exercise: Classify These UVa Problems
Rule of Thumb for the ‘Worst AC Algorithm’ for various input size n

Example of a Cumulative Frequency Table
Comparison Between Segment Tree and Fenwick Tree

Running Bisection Method on the Example Function
DP Decision Table
UVa 108 - Maximum Sum
Summary of Classical DP Problems in this Section
Comparison of Problem Solving Techniques (Rule of Thumb only)

List of Important Graph Terminologies
Graph Traversal Algorithm Decision Table
Floyd Warshall’s DP Table
SSSP/APSP Algorithm Decision Table
Characters Used in UVa 11380

List of some mathematical terms discussed in this chapter
Part 1: Finding kX, f(z) = B x a4+ 1D)%4, 2o =7
Part 2: Finding g0 oo
Part 3: Finding A

L/R: Before/After Sorting; k = 1; the initial sorted order appears
L/R: Before/After Sorting; k = 2; ‘GATAGACA’ and ‘GACA’ are swapped . . .
Before/After sorting; k = 4; no change
String Matching using Suffix Arrayo o000
Computing the LCP given the SA of T = ‘GATAGACA$’
The Suffix Array, LCP, and owner of T = ‘GATAGACA$CATA#>

The Reduction from LCA to RMQ
Examples of Infix, Prefix, and Postfix expressions
Example of a Postfix Calculation
Example of an Execution of Shunting yard Algorithm

xx1

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

Hlustration of UVa 10911 - Forming Quiz Teams
UVa Online Judge and ACM ICPC Live Archive
USACO Training Gateway and Sphere Online Judge
Some references that inspired the authors to write this book

Bitmask Visualization
Examples of BST
(Max) Heap Visualization
Graph Data Structure Visualization
Implicit Graph Examples L
unionSet(0, 1) — (2, 3) — (4, 3) and isSameSet(0, 4)
unionSet(0, 3) — findSet(0)
Segment Tree of Array A = {18, 17, 13, 19, 15, 11, 20} and RMQ(1, 3)

Segment Tree of Array A = {18, 17, 13, 19, 15, 11, 20} and RMQ(4, 6)

Updating Array A to {18, 17, 13,19, 15,99, 20}
Example of rsq(6)
Example of rsq(3)
Example of adjust(5, 1)

8-QUEENS e
UVa 10360 [47]
My Ancestor (all 5 root-to-leaf paths are sorted)
Visualization of UVa 410 - Station Balance
UVa 410 - Observations
UVa 410 - Greedy Solution
UVa 10382 - Watering Grass o vt
Bottom-Up DP (columns 21 to 200 are not shown)
Longest Increasing Subsequence L.
Coin Change
A Complete Graph
Cutting Sticks Illustration

Sample Graph
UVa 11902
Example Animation of BES
An Example of DAG
Animation of DFS when Run on the Sample Graph in Figure 4.1
Introducing two More DFS Attributes: dfs_num and dfs_low
Finding Articulation Points with dfs_num and dfs_low
Finding Bridges, also with dfsnum and dfs_low
An Example of a Directed Graph and its SCCs

xxii

LIST OF FIGURES (© Steven & Felix

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2

Example of an MST Problem 138
Animation of Kruskal’s Algorithm for an MST Problem 139
Animation of Prim’s Algorithm for the same graph as in Figure 4.10—left . . 140
From left to right: MST, ‘Maximum’ ST, ‘Minimum’ SS, MS ‘Forest” 141
Second Best ST (from UVa 10600 [47]) 142
Finding the Second Best Spanning Tree from the MST 142
Minimax (UVa 10048 [47]) o 143
Dijkstra Animation on a Weighted Graph (from UVa 341 [47]) 149
-ve Weight 151
Bellman Ford’s can detect the presence of negative cycle (from UVa 558 [47]) 151
Floyd Warshall’s Explanation 1 156
Floyd Warshall’s Explanation 2 156
Floyd Warshall’s Explanation 3 157
Floyd Warshall’s Explanation 4 157
Max Flow Illustration (UVa 820 [47] - ICPC World Finals 2000 Problem E) . 163
Ford Fulkerson’s Method Implemented with DFS Can Be Slow 164
What are the Max Flow value of these three residual graphs? 165
Residual Graph of UVa 259 [47] Lo 166
Vertex Splitting Technique L. 168
Some Test Cases of UVa 11380 168
Flow Graph Modeling o 169
Special Graphs (L-to-R): DAG, Tree, Eulerian, Bipartite Graph 171
The Longest Path on this DAG 172
Example of Counting Paths in DAG - Bottom-Up 172
Example of Counting Paths in DAG - Top-Down 173
The Given General Graph (left) is Converted to DAG 174
The Given General Graph/Tree (left) is Converted to DAG 175
Coin Change as Shortest Paths on DAG 176
0-1 Knapsack as Longest Paths on DAG 177
UVa 10943 as Counting Paths in DAG 177
A: SSSP (Part of APSP); B1-B2: Diameter of Tree 179
Fulerian 179
Bipartite Matching problem can be reduced to a Max Flow problem 181
MCBM Variants 181
Augmenting Path Algorithm 183
Left: Triangulation of a Convex Polygon, Right: Monotonic Paths 206
Decision Tree for an instance of ‘Euclid’s Game” 226
Partial Decision Tree for an instance of ‘A multiplication game’ 227
Example: A = ‘ACAATCC’ and B = ‘AGCATGC’ (alignment score =7) 246
Suffix Trie 249
Suffixes, Suffix Trie, and Suffix Tree of T = ‘GATAGACA$’> 250
String Matching of T = ‘GATAGACA$’ with Various Pattern Strings 251
Longest Repeated Substring of T = ‘GATAGACA$> 252
Generalized ST of T7 = ‘GATAGACA$’ and 15 = ‘CATA#’ and their LCS . . 253
Sorting the Suffixes of T = ‘GATAGACA$’ 254
Suffix Tree and Suffix Array of T = ‘GATAGACA$’ 254

Rotating point (10, 3) by 180 degrees counter clockwise around origin (0, 0) 272
Distance to Line (left) and to Line Segment (middle); Cross Product (right) 274

xxiii

LIST OF FIGURES

(© Steven & Felix

7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

Al
A2
A3
A4
A5
A6

Circles e
Circle Through 2 Points and Radius
Triangles e
Incircle and Circumcircle of a Triangle
Quadrilaterals
Left: Convex Polygon, Right: Concave Polygon
Top Left: inside, Top Right: also inside, Bottom: outside
Left: Before Cut, Right: After Cut
Rubber Band Analogy for Finding Convex Hull
Sorting Set of 12 Points by Their Angles w.r.t a Pivot (Point 0)
The Main Part of Graham’s Scan algorithm
Explanation for Circle Through 2 Points and Radius

5 Queens problem: The initial state oL
5 Queens problem: After placing the first queen
5 Queens problem: After placing the second queen
5 Queens problem: After placing the third queen.
N-Queens, after placing the fourth and the fifth queens
Visualization of UVa 1098 - Robotson Ice
Case 1: Example when s is two steps away from¢
Case 2: Example when s is four steps away from ¢
Case 3: Example when s is five steps away from ¢
15 Puzzle
The Descent Path
Hlustration for ACM ICPC WF2010 - J - Sharing Chocolate
Athletics Track (from UVa 11646)
Mlustration for ACM ICPC WF2009 - A - A Careful Approach

The Implication Graph of Example 1 (Left) and Example 2 (Right)
The Standard TSP versus Bitonic TSP
An Example of Chinese Postman Problem
The Four Common Variants of Graph Matching in Programming Contests

A Sample Test Case of UVa 10746: 3 Matchings with Min Cost = 40 .
L: Sphere, M: Hemisphere and Great-Circle, R: gcDistance (Arc A-B)
Comparison Between Max Independent Paths vs Max Edge-Disjoint Paths

An example of a rooted tree T' with n = 10 vertices
The Magic Square Construction Strategy for Oddn
An Example of Min Cost Max Flow (MCMF) Problem (UVa 10594 [47]) . .
Min Path Cover on DAG (from UVa 1201 [47])
Example of an AVL Tree Deletion (Delete 7)
Explanation of RMQ(i, j)

Steven’s statistics as of 24 May 2013o
Hunting the next easiest problems using ‘dacu’
We can rewind past contests with ‘virtual contest’
The programming exercises in this book are integrated in uHunt
Steven’s & Felix’s progress in UVa online judge (2000-present)
Andrian, Felix, and Andoko Won ACM ICPC Kaohsiung 2006

XX1v

Chapter 1

Introduction

I want to compete in ACM ICPC World Finals!
— A dedicated student

1.1 Competitive Programming

The core directive in ‘Competitive Programming’ is this: “Given well-known Computer
Science (CS) problems, solve them as quickly as possible!”.

Let’s digest the terms one by one. The term ‘well-known CS problems’ implies that in
competitive programming, we are dealing with solved CS problems and not research problems
(where the solutions are still unknown). Some people (at least the problem author) have
definitely solved these problems before. To ‘solve them’ implies that we! must push our CS
knowledge to a certain required level so that we can produce working code that can solve
these problems too—at least in terms of getting the same output as the problem author
using the problem author’s secret? test data within the stipulated time limit. The need to
solve the problem ‘as quickly as possible’ is where the competitive element lies—speed is a
very natural goal in human behavior.

An illustration: UVa Online Judge [47] Problem Number 10911 (Forming Quiz Teams).

Abridged Problem Description:

Let (x, y) be the coordinates of a student’s house on a 2D plane. There are 2N students
and we want to pair them into N groups. Let d; be the distance between the houses
of 2 students in group i. Form N groups such that cost = ZZJ\L 1 d; is minimized.
Output the minimum cost. Constraints: 1 < N < 8 and 0 < z,y < 1000.

Sample input:
N = 2; Coordinates of the 2N = 4 houses are {1,1}, {8,6}, {6,8}, and {1, 3}.

Sample output:
cost = 4.83.

Can you solve this problem?
If so, how many minutes would you likely require to complete the working code?
Think and try not to flip this page immediately!

ISome programming competitions are done in a team setting to encourage teamwork as software engineers
usually do not work alone in real life.

2By hiding the actual test data from the problem statement, competitive programming encourages the
problem solvers to exercise their mental strength to think of all possible corner cases of the problem and
test their programs with those cases. This is typical in real life where software engineers have to test their
software a lot to make sure that the software meets the requirements set by clients.

1.1. COMPETITIVE PROGRAMMING (© Steven & Felix

i Can you spat,pne more possible grouping? |

9 {which is not gptimal) 9

8 O 8 8

7 7 7 \
[O 6 6

5 5 5

4 4 4

3 © 3 3 I

2 2 : 2 :
oI . Not Optimal . Optimal
0

1 23 4 56 7 8 910 0 1 2 3 45 6 7 8951 0 12 3 45 6 7 8 9510

Cost=860+761=1621 | Cost=2.00 +2.83 = 4.83

Figure 1.1: Tllustration of UVa 10911 - Forming Quiz Teams

Now ask yourself: Which of the following best describes you? Note that if you are
unclear with the material or the terminology shown in this chapter, you can re-read it
again after going through this book once.
e Uncompetitive programmer A (a.k.a. the blurry one):
Step 1: Reads the problem and becomes confused. (This problem is new for him).
Step 2: Tries to code something: Reading the non-trivial input and output.
Step 3: Realizes that all his attempts are not Accepted (AC):
Greedy (Section 3.4): Repeatedly pairing the two remaining students with the
shortest separating distances gives the Wrong Answer (WA).
Naive Complete Search: Using recursive backtracking (Section 3.2) and trying
all possible pairings yields Time Limit Exceeded (TLE).

e Uncompetitive programmer B (Give up):
Step 1: Reads the problem and realizes that he has seen this problem before.
But also remembers that he has not learned how to solve this kind of problem...
He is not aware of the Dynamic Programming (DP) solution (Section 3.5)...
Step 2: Skips the problem and reads another problem in the problem set.

o (Still) Uncompetitive programmer C (Slow):

Step 1: Reads the problem and realizes that it is a hard problem: ‘minimum
weight perfect matching on a small general weighted graph’. However,
since the input size is small, this problem is solvable using DP. The DP state is
a bitmask that describes a matching status, and matching unmatched students
¢ and j will turn on two bits ¢ and j in the bitmask (Section 8.3.1).

Step 2: Codes I/O routine, writes recursive top-down DP, tests, debugs >.<...
Step 3: After 3 hours, his solution obtains AC (passed all the secret test data).

e Competitive programmer D:
Completes all the steps taken by uncompetitive programmer C in < 30 minutes.

e Very competitive programmer E:
A very competitive programmer (e.g. the red ‘target’ coders in TopCoder [32])
would solve this ‘well known’ problem < 15 minutes...

Please note that being well-versed in competitive programming is not the end goal, but
only a means to an end. The true end goal is to produce all-rounder computer scien-
tists/programmers who are much readier to produce better software and to face harder CS
research problems in the future. The founders of the ACM International Collegiate Pro-
gramming Contest (ICPC) [66] have this vision and we, the authors, agree with it. With
this book, we play our little role in preparing the current and the future generations to be
more competitive in dealing with well-known CS problems frequently posed in the recent
ICPCs and the International Olympiad in Informatics (IOI)s.

CHAPTER 1. INTRODUCTION (© Steven & Felix

Exercise 1.1.1: The greedy strategy of the uncompetitive programmer A above actually
works for the sample test case shown in Figure 1.1. Please give a better counter example!

Exercise 1.1.2: Analyze the time complexity of the naive complete search solution by
uncompetitive programmer A above to understand why it receives the TLE verdict!

Exercise 1.1.3*: Actually, a clever recursive backtracking solution with pruning can still
solve this problem. Solve this problem without using a DP table!

1.2 Tips to be Competitive

If you strive to be like competitive programmers D or E as illustrated above—that is, if
you want to be selected (via provincial/state — national team selections) to participate and
obtain a medal in the IOI [34], or to be one of the team members that represents your
University in the ACM ICPC [66] (nationals — regionals — and up to world finals), or to
do well in other programming contests—then this book is definitely for you!

In the subsequent chapters, you will learn everything from the basic to the intermediate
or even to the advanced?® data structures and algorithms that have frequently appeared in
recent programming contests, compiled from many sources [50, 9, 56, 7, 40, 58, 42, 60, 1,
38, 8, 59, 41, 62, 46] (see Figure 1.4). You will not only learn the concepts behind the data
structures and algorithms, but also how to implement them efficiently and apply them to
appropriate contest problems. On top of that, you will also learn many programming tips
derived from our own experiences that can be helpful in contest situations. We start this
book by giving you several general tips below:

1.2.1 Tip 1: Type Code Faster!

No kidding! Although this tip may not mean much as ICPC and (especially) 101 are not
typing contests, we have seen Rank ¢ and Rank ¢ + 1 ICPC teams separated only by a few
minutes and frustrated IOI contestants who miss out on salvaging important marks by not
being able to code a last-minute brute force solution properly. When you can solve the same
number of problems as your competitor, it will then be down to coding skill (your ability to
produce concise and robust code) and ... typing speed.

Try this typing test at http://www.typingtest.com and follow the instructions there
on how to improve your typing skill. Steven’s is ~85-95 wpm and Felix’s is ~55-65 wpm. If
your typing speed is much less than these numbers, please take this tip seriously!

On top of being able to type alphanumeric characters quickly and correctly, you will
also need to familiarize your fingers with the positions of the frequently used programming
language characters: parentheses () or {} or square brackets [| or angle brackets <>, the
semicolon ; and colon :, single quotes ‘* for characters, double quotes “” for strings, the
ampersand &, the vertical bar or the ‘pipe’ |, the exclamation mark !, etc.

As a little practice, try typing the C++ source code below as fast as possible.

#include <algorithm> // if you have problems with this C++ code,
#include <cmath> // consult your programming text books first...
#include <cstdio>

#include <cstring>

using namespace std;

3Whether you perceive the material presented in this book to be of intermediate or advanced difficulty
depends on your programming skill prior to reading this book.

1.2. TIPS TO BE COMPETITIVE (© Steven & Felix

/* Forming Quiz Teams, the solution for UVa 10911 above */
// using global variables is a bad software engineering practice,
int N, target; // but it is OK for competitive programming
double dist[20][20], memo[1 << 16]; // 1 << 16 = 2"16, note that max N = 8

double matching(int bitmask) { // DP state = bitmask

// we initialize ‘memo’ with -1 in the main function

if (memo[bitmask] > -0.5) // this state has been computed before

return memo [bitmask] ; // simply lookup the memo table

if (bitmask == target) // all students are already matched

return memo [bitmask] = O; // the cost is O

double ans = 2000000000.0; // initialize with a large value
int pl, p2;

for (pl = 0; pl < 2 * N; pl++)
if (!(bitmask & (1 << p1)))

break; // find the first bit that is off
for (p2 = pl + 1; p2 < 2 * N; p2++) // then, try to match pl
if (!(bitmask & (1 << p2))) // with another bit p2 that is also off
ans = min(ans, // pick the minimum

dist[p1] [p2] + matching(bitmask | (1 << p1) | (1 << p2)));

return memo[bitmask] = ans; // store result in a memo table and return

int main() {
int i, j, caseNo = 1, x[20], y[20];

// freopen("10911.txt", "r", stdin); // redirect input file to stdin
while (scanf("%d", &N), N) { // yes, we can do this :)
for (i = 0; i < 2 % N; i++)
scanf ("%xs %d %d", &x[i], &yl[il); // ?%x*s’ skips names
for (i =0; 1 <2 * N - 1; i++) // build pairwise distance table
for (j =1+ 1; j<2x%N; j++) // have you used ‘hypot’ before?
dist[i] [j] = dist[jl1[i] = hypot(x[i] - x[jl, y[il - y[j1);

// use DP to solve min weighted perfect matching on small general graph
for (i = 0; i < (1 << 16); i++) memo[i] = -1.0; // set -1 to all cells
target = (1 << (2 * N)) - 1;
printf("Case %d: %.21f\n", caseNo++, matching(0));

} } // return 0;

For your reference, the explanation of this ‘Dynamic Programming with bitmask’ solution
is given in Section 2.2, 3.5, and 8.3.1. Do not be alarmed if you do not understand it yet.

1.2.2 Tip 2: Quickly Identify Problem Types

In ICPCs, the contestants (teams) are given a set of problems (= 7-12 problems) of varying
types. From our observation of recent ICPC Asia Regional problem sets, we can categorize
the problems types and their rate of appearance as in Table 1.1.

4

CHAPTER 1. INTRODUCTION (© Steven & Felix

In IOIs, the contestants are given 6 tasks over 2 days (8 tasks over 2 days in 2009-2010) that
cover items 1-5 and 10, with a much smaller subset of items 6-10 in Table 1.1. For details,
please refer to the 2009 101 syllabus [20] and the IOI 1989-2008 problem classification [67].

No Category In This Book Frequency
1. Ad Hoc Section 1.4 1-2
2. Complete Search (Iterative/Recursive) Section 3.2 1-2
3. Divide and Conquer Section 3.3 0-1
4. Greedy (usually the original ones) Section 3.4 0-1
5. Dynamic Programming (usually the original ones) Section 3.5 1-3
6. Graph Chapter 4 1-2
7. Mathematics Chapter 5 1-2
8. String Processing Chapter 6 1
9. Computational Geometry Chapter 7 1
10. Some Harder/Rare Problems Chapter 8-9 1-2

Total in Set 817 (=< 12)
Table 1.1: Recent ACM ICPC (Asia) Regional Problem Types

The classification in Table 1.1 is adapted from [48] and by no means complete. Some tech-
niques, e.g. ‘sorting’, are not classified here as they are ‘trivial” and usually used only as a
‘sub-routine’ in a bigger problem. We do not include ‘recursion’ as it is embedded in cate-
gories like recursive backtracking or Dynamic Programming. We also omit ‘data structures’
as the usage of efficient data structure can be considered to be integral for solving harder
problems. Of course, problems sometimes require mixed techniques: A problem can be clas-
sified into more than one type. For example, Floyd Warshall’s algorithm is both a solution
for the All-Pairs Shortest Paths (APSP, Section 4.5) graph problem and a Dynamic Pro-
gramming (DP) algorithm (Section 3.5). Prim’s and Kruskal’s algorithms are both solutions
for the Minimum Spanning Tree (MST, Section 4.3) graph problem and Greedy algorithms
(Section 3.4). In Section 8.4, we will discuss (harder) problems that require more than one
algorithms and/or data structures to be solved.

In the (near) future, these classifications may change. One significant example is Dynamic
Programming. This technique was not known before 1940s, nor frequently used in ICPCs or
IOIs before mid 1990s, but it is considered a definite prerequisite today. As an illustration:
There were > 3 DP problems (out of 11) in the recent ICPC World Finals 2010.

However, the main goal is not just to associate problems with the techniques required to
solve them like in Table 1.1. Once you are familiar with most of the topics in this book, you
should also be able to classify problems into the three types in Table 1.2.

No Category Confidence and Expected Solving Speed

A. T have solved this type before [am sure that I can re-solve it again (and fast)
B. T have seen this type before But that time I know I cannot solve it yet

C. T have not seen this type before See discussion below

Table 1.2: Problem Types (Compact Form)

To be competitive, that is, do well in a programming contest, you must be able to confidently
and frequently classify problems as type A and minimize the number of problems that you
classify into type B. That is, you need to acquire sufficient algorithm knowledge and develop
your programming skills so that you consider many classical problems to be easy. However,
to win a programming contest, you will also need to develop sharp problem solving skills
(e.g. reducing the given problem to a known problem, identifying subtle hints or special

5

1.2. TIPS TO BE COMPETITIVE (© Steven & Felix

properties in the problem, attacking the problem from a non obvious angle, etc) so that you
(or your team) will be able to derive the required solution to a hard/original type C problem
in I0I or ICPC Regionals/World Finals and do so within the duration of the contest.

UVa Title Problem Type Hint

10360 Rat Attack Complete Search or DP Section 3.2
10341 Solve It Section 3.3
11292 Dragon of Loowater Section 3.4
11450 Wedding Shopping Section 3.5
10911 Forming Quiz Teams DP with bitmask Section 8.3.1
11635 Hotel Booking Section 8.4
11506 Angry Programmer Section 4.6
10243 Fire! Fire!! Fire!!l Section 4.7.1
10717 Mint Section 8.4
11512 GATTACA Section 6.6
10065 Useless Tile Packers Section 7.3.7

Table 1.3: Exercise: Classify These UVa Problems

Exercise 1.2.1: Read the UVa [47] problems shown in Table 1.3 and determine their problem
types. Two of them have been identified for you. Filling this table is easy after mastering
this book—all the techniques required to solve these problems are discussed in this book.

1.2.3 Tip 3: Do Algorithm Analysis

Once you have designed an algorithm to solve a particular problem in a programming contest,
you must then ask this question: Given the maximum input bound (usually given in a good
problem description), can the currently developed algorithm, with its time/space complexity,
pass the time/memory limit given for that particular problem?

Sometimes, there are more than one way to attack a problem. Some approaches may be
incorrect, others not fast enough, and yet others ‘overkill’. A good strategy is to brainstorm
for many possible algorithms and then pick the simplest solution that works (i.e. is fast
enough to pass the time and memory limit and yet still produce the correct answer)*!

Modern computers are quite fast and can process® up to ~ 100M (or 10%; 1M = 1,000, 000)
operations in a few seconds. You can use this information to determine if your algorithm will
run in time. For example, if the maximum input size n is 100K (or 10°; 1K = 1,000), and
your current algorithm has a time complexity of O(n?), common sense (or your calculator)
will inform you that (100K)? or 10 is a very large number that indicates that your algo-
rithm will require (on the order of) hundreds of seconds to run. You will thus need to devise
a faster (and also correct) algorithm to solve the problem. Suppose you find one that runs
with a time complexity of O(nlog, n). Now, your calculator will inform you that 10° log, 10°
is just 1.7 x 10% and common sense dictates that the algorithm (which should now run in
under a second) will likely be able to pass the time limit.

4Discussion: It is true that in programming contests, picking the simplest algorithm that works is crucial
for doing well in that programming contest. However, during training sessions, where time constraints are
not an issue, it can be beneficial to spend more time trying to solve a certain problem using the best possible
algorithm. We are better prepared this way. If we encounter a harder version of the problem in the future,
we will have a greater chance of obtaining and implementing the correct solution!

5Treat this as a rule of thumb. This numbers may vary from machine to machine.

CHAPTER 1. INTRODUCTION (© Steven & Felix

The problem bounds are as important as your algorithm’s time complexity in determining
if your solution is appropriate. Suppose that you can only devise a relatively-simple-to-code
algorithm that runs with a horrendous time complexity of O(n?). This may appear to be
an infeasible solution, but if n < 50, then you have actually solved the problem. You can
implement your O(n?) algorithm with impunity since 50% is just 6.25M and your algorithm
should still run in around a second.

Note, however, that the order of complexity does not necessarily indicate the actual
number of operations that your algorithm will require. If each iteration involves a large
number of operations (many floating point calculations, or a significant number of constant
sub-loops), or if your implementation has a high ‘constant’ in its execution (unnecessarily
repeated loops or multiple passes, or even /O or execution overhead), your code may take
longer to execute than expected. However, this will usually not be the case as the problem
authors should have designed the time limits so that a well-coded algorithm with a suitable
time complexity will achieve an AC verdict.

By analyzing the complexity of your algorithm with the given input bound and the stated
time/memory limit, you can better decide whether you should attempt to implement your
algorithm (which will take up precious time in the ICPCs and IOls), attempt to improve
your algorithm first, or switch to other problems in the problem set.

As mentioned in the preface of this book, we will not discuss the concept of algorithmic
analysis in details. We assume that you already have this basic skill. There are a multitude
of other reference books (for example, the “Introduction to Algorithms” [7], “Algorithm De-
sign” [38], “Algorithms” [8], etc) that will help you to understand the following prerequisite
concepts/techniques in algorithmic analysis:

e Basic time and space complexity analysis for iterative and recursive algorithms:

— An algorithm with k-nested loops of about n iterations each has O(n*) complexity.

— If your algorithm is recursive with b recursive calls per level and has L levels, the
algorithm has roughly O(b%) complexity, but this is a only a rough upper bound.
The actual complexity depends on what actions are done per level and whether
pruning is possible.

— A Dynamic Programming algorithm or other iterative routine which processes a
2D n x n matrix in O(k) per cell runs in O(k x n?) time. This is explained in
further detail in Section 3.5.

e More advanced analysis techniques:

— Prove the correctness of an algorithm (especially for Greedy algorithms in Section
3.4), to minimize your chance of getting the ‘Wrong Answer’ verdict.

— Perform the amortized analysis (e.g. see Chapter 17 of [7])—although rarely
used in contests—to minimize your chance of getting the ‘Time Limit Exceeded’
verdict, or worse, considering your algorithm to be too slow and skips the problem
when it is in fact fast enough in amortized sense.

— Do output-sensitive analysis to analyze algorithm which (also) depends on output
size and minimize your chance of getting the ‘Time Limit Exceeded’ verdict. For
example, an algorithm to search for a string with length m in a long string with
the help of a Suffix Tree (that is already built) runs in O(m+ occ) time. The time
taken for this algorithm to run depends not only on the input size m but also the
output size—the number of occurrences oce (see more details in Section 6.6).

1.2. TIPS TO BE COMPETITIVE (© Steven & Felix

e Familiarity with these bounds:
— 210 =1.024 ~ 103, 220 = 1,048, 576 ~ 10°.

— 32-bit signed integers (int) and 64-bit signed integers (long long) have upper
limits of 23! —1 &~ 2 x 10 (safe for up to ~ 9 decimal digits) and 26 —1 ~ 9 x 10'®
(safe for up to =~ 18 decimal digits) respectively.

— Unsigned integers can be used if only non-negative numbers are required. 32-bit
unsigned integers (unsigned int) and 64-bit unsigned integers (unsigned long
long) have upper limits of 232 — 1 ~ 4 x 10 and 25 — 1 ~ 1.8 x 10 respectively.

If you need to store integers > 264, use the Big Integer technique (Section 5.3).

There are n! permutations and 2" subsets (or combinations) of n elements.
— The best time complexity of a comparison-based sorting algorithm is Q(n log, n).
— Usually, O(nlog, n) algorithms are sufficient to solve most contest problems.

— The largest input size for typical programming contest problems must be < 1M.
Beyond that, the time needed to read the input (the Input/Output routine) will
be the bottleneck.

— A typical year 2013 CPU can process 100M = 108 operations in a few seconds.

Many novice programmers would skip this phase and immediately begin implementing the
first (naive) algorithm that they can think of only to realize that the chosen data structure
or algorithm is not efficient enough (or wrong). Our advice for ICPC contestants®: Refrain
from coding until you are sure that your algorithm is both correct and fast enough.

n Worst AC Algorithm Comment

< [10..11] O(n!),O(n%) e.g. Enumerating permutations (Section 3.2)

< [15.18] O(2" x n?) e.g. DP TSP (Section 3.5.2)

< [18.22] O(2" x n) e.g. DP with bitmask technique (Section 8.3.1)

< 100 O(n*) e.g. DP with 3 dimensions + O(n) loop, ,,Ck—4

< 400 O(n?) e.g. Floyd Warshall’s (Section 4.5)

<2K O(n*logyn) e.g. 2-nested loops + a tree-related DS (Section 2.3)
< 10K O(n?) e.g. Bubble/Selection/Insertion Sort (Section 2.2)

< 1M O(nlog,n) e.g. Merge Sort, building Segment Tree (Section 2.3)
<100M O(n),0(logyn),O(1) Most contest problem has n < 1M (I/O bottleneck)

Table 1.4: Rule of thumb time complexities for the ‘Worst AC Algorithm’ for various single-
test-case input sizes n, assuming that your CPU can compute 100M items in 3s.

To help you understand the growth of several common time complexities, and thus help you
judge how fast is ‘enough’, refer to Table 1.4. Variants of such tables are also found in many
other books on data structures and algorithms. This table is written from a programming
contestant’s perspective. Usually, the input size constraints are given in a (good) problem
description. With the assumption that a typical CPU can execute a hundred million opera-
tions in around 3 seconds (the typical time limit in most UVa [47] problems), we can predict
the ‘worst’ algorithm that can still pass the time limit. Usually, the simplest algorithm has
the poorest time complexity, but if it can pass the time limit, just use it!

6Unlike ICPC, the IOI tasks can usually be solved (partially or fully) using several possible solutions,
each with different time complexities and subtask scores. To gain valuable points, it may be good to use a
brute force solution to score a few points and to understand the problem better. There will be no significant
time penalty as IOl is not a speed contest. Then, iteratively improve the solution to gain more points.

CHAPTER 1. INTRODUCTION (© Steven & Felix

From Table 1.4, we see the importance of using good algorithms with small orders of growth
as they allow us to solve problems with larger input sizes. But a faster algorithm is usually
non-trivial and sometimes substantially harder to implement. In Section 3.2.3, we discuss a
few tips that may allow the same class of algorithms to be used with larger input sizes. In
subsequent chapters, we also explain efficient algorithms for various computing problems.

Exercise 1.2.2: Please answer the following questions below using your current knowledge
about classic algorithms and their time complexities. After you have finished reading this
book once, it may be beneficial to attempt this exercise again.

1. There are n webpages (1 <n < 10M). Each webpage i has a page rank r;. You want
to pick the top 10 pages with the highest page ranks. Which method is better?

(a) Load all n webpages’ page rank to memory, sort (Section 2.2) them in descending
page rank order, obtaining the top 10.

(b) Use a priority queue data structure (a heap) (Section 2.3).

2. Given an M x N integer matrix @ (1 < M, N < 30), determine if there exists a
sub-matrix of @ of size A x B (1< A< M,1 < B < N) where mean(Q) = 7.

(a) Try all possible sub-matrices and check if the mean of each sub-matrix is 7.
This algorithm runs in O(M? x N3).
(b) Try all possible sub-matrices, but in O(M? x N?) with this technique: .

3. Given a list L with 10K integers, you need to frequently obtain sum(i, j), i.e. the
sum of L[i] + L[i+1] + ...+ L[j]. Which data structure should you use?
) Simple Array (Section 2.2).
) Simple Array pre-processed with Dynamic Programming (Section 2.2 & 3.5).
) Balanced Binary Search Tree (Section 2.3).
d) Binary Heap (Section 2.3).
) Segment Tree (Section 2.4.3).
) Binary Indexed (Fenwick) Tree (Section 2.4.4).
) Suffix Tree (Section 6.6.2) or its alternative, Suffix Array (Section 6.6.4).

4. Given a set S of N points randomly scattered on a 2D plane (2 < N < 1000), find
two points € S that have the greatest separating Euclidean distance. Is an O(N?)
complete search algorithm that tries all possible pairs feasible?

(a) Yes, such complete search is possible.

(b) No, we must find another way. We must use: ____________ .

5. You have to compute the shortest path between two vertices on a weighted Directed
Acyclic Graph (DAG) with |V, |E| < 100K. Which algorithm(s) can be used in a
typical programming contest (that is, with a time limit of approximately 3 seconds)?

(a) Dynamic Programming (Section 3.5, 4.2.5, & 4.7.1).
(b) Breadth First Search (Section 4.2.2 & 4.4.2).
(c) Dijkstra’s (Section 4.4.3).

1.2. TIPS TO BE COMPETITIVE (© Steven & Felix

(d) Bellman Ford’s (Section 4.4.4).
(e) Floyd Warshall’s (Section 4.5).

6. Which algorithm produces a list of the first 10K prime numbers with the best time
complexity? (Section 5.5.1)

(a) Sieve of Eratosthenes (Section 5.5.1).
(b) For each number i € [1..10K7], test if isPrime(i) is true (Section 5.5.1).

7. You want to test if the factorial of n, i.e. n!is divisible by an integer m. 1 < n < 10000.
What should you do?

(a) Test if n! % m == 0.

(b) The naive approach above will not work, use: (Section 5.5.1).

8. Question 4, but with a larger set of points: N < 1M and one additional constraint:
The points are randomly scattered on a 2D plane.

(a) The complete search mentioned in question 3 can still be used.

(b) The naive approach above will not work, use: (Section 7.3.7).

9. You want to enumerate all occurrences of a substring P (of length m) in a (long) string
T (of length n), if any. Both n and m have a maximum of 1M characters.

(a) Use the following C++ code snippet:

for (dint i = 0; i < n; i++) {
bool found = true;
for (int j = 0; j < m && found; j++)
if (4 + j >=n || P[j] !'= T[i + j]) found = false;
if (found) printf("P is found at index %d in T\n", i);

¥

(b) The naive approach above will not work, use: (Section 6.4 or 6.6).

1.2.4 Tip 4: Master Programming Languages

There are several programming languages supported in ICPC7| including C/C++ and Java.
Which programming languages should one aim to master?

Our experience gives us this answer: We prefer C++ with its built-in Standard Template
Library (STL) but we still need to master Java. Even though it is slower, Java has powerful
built-in libraries and APIs such as Biglnteger /BigDecimal, GregorianCalendar, Regex, etc.
Java programs are easier to debug with the virtual machine’s ability to provide a stack trace

"Personal opinion: According to the latest IOI 2012 competition rules, Java is currently still not supported
in IOI. The programming languages allowed in IOI are C, C++, and Pascal. On the other hand, the ICPC
World Finals (and thus most Regionals) allows C, C++ and Java to be used in the contest. Therefore, it is
seems that the ‘best’ language to master is C++ as it is supported in both competitions and it has strong
STL support. If IOI contestants choose to master C++, they will have the benefit of being able to use the
same language (with an increased level of mastery) for ACM ICPC in their University level pursuits.

10

CHAPTER 1. INTRODUCTION (© Steven & Felix

when it crashes (as opposed to core dumps or segmentation faults in C/C++). On the
other hand, C/C++ has its own merits as well. Depending on the problem at hand, either
language may be the better choice for implementing a solution in the shortest time.

Suppose that a problem requires you to compute 25! (the factorial of 25). The answer is
very large: 15,511,210,043,330,985,984,000,000. This far exceeds the largest built-in primitive
integer data type (unsigned long long: 264 —1). As there is no built-in arbitrary-precision
arithmetic library in C/C++ as of yet, we would have needed to implement one from scratch.
The Java code, however, is exceedingly simple (more details in Section 5.3). In this case,
using Java definitely makes for shorter coding time.

import java.util.Scanner;
import java.math.Biglnteger;

class Main { // standard Java class name in UVa 0J
public static void main(String[] args) {
BigInteger fac = Biglnteger.ONE;
for (int i = 2; i <= 25; i++)
fac = fac.multiply(BigInteger.valueOf(i)); // it is in the library!
System.out.println(fac);

)

Mastering and understanding the full capability of your favourite programming language is
also important. Take this problem with a non-standard input format: the first line of input
is an integer N. This is followed by N lines, each starting with the character ‘0, followed
by a dot ‘., then followed by an unknown number of digits (up to 100 digits), and finally
terminated with three dots ‘...".

3

0.1227...

0.517611738. ..
0.7341231223444344389923899277 . . .

One possible solution is as follows:

#include <cstdio>
using namespace std;

int N; // using global variables in contests can be a good strategy
char x[110]; // make it a habit to set array size a bit larger than needed

int main() {
scanf ("%d\n", &N);
while (N--) { // we simply loop from N, N-1, N-2, ..., O
scanf ("0.%[0-9]...\n", &x); // ‘&’ is optional when x is a char array
// note: if you are surprised with the trick above
// please check scanf details in www.cppreference.com
printf("the digits are 0.%s\n", x);
} } // return 0;

Source code: ch1_01_factorial. java; ch1_02_scanf.cpp

11

1.2. TIPS TO BE COMPETITIVE (© Steven & Felix

Not many C/C++ programmers are aware of partial regex capabilities built into the C
standard 1/0 library. Although scanf/printf are C-style I/O routines, they can still be
used in C++ code. Many C++ programmers ‘force’ themselves to use cin/cout all the time
even though it is sometimes not as flexible as scanf/printf and is also far slower.

In programming contests, especially ICPCs, coding time should not be the primary
bottleneck. Once you figure out the ‘worst AC algorithm’ that will pass the given time limit,
you are expected to be able to translate it into a bug-free code and fast!

Now, try some of the exercises below! If you need more than 10 lines of code to solve any
of them, you should revisit and update your knowledge of your programming language(s)!
A mastery of the programming languages you use and their built-in routines is extremely
important and will help you a lot in programming contests.

Exercise 1.2.3: Produce working code that is as concise as possible for the following tasks:

1. Using Java, read in a double
(e.g. 1.4732, 15.324547327, etc.)
echo it, but with a minimum field width of 7 and 3 digits after the decimal point
(e.g. s81.473 (where ‘s’ denotes a space), s15.325, etc.)

2. Given an integer n (n < 15), print 7 to n digits after the decimal point (rounded).
(e.g. for n = 2, print 3.14; for n = 4, print 3.1416; for n = 5, prints 3.14159.)

3. Given a date, determine the day of the week (Monday, ..., Sunday) on that day.
(e.g. 9 August 2010—the launch date of the first edition of this book—is a Monday.)

4. Given n random integers, print the distinct (unique) integers in sorted order.

5. Given the distinct and valid birthdates of n people as triples (DD, MM, YYYY), order
them first by ascending birth months (MM), then by ascending birth dates (DD), and
finally by ascending age.

6. Given a list of sorted integers L of size up to 1M items, determine whether a value v
exists in L with no more than 20 comparisons (more details in Section 2.2).

7. Generate all possible permutations of {‘A’, ‘B’, ‘C’, ..., ‘J’'}, the first N = 10 letters
in the alphabet (see Section 3.2.1).

8. Generate all possible subsets of {0, 1, 2, ..., N-1}, for N = 20 (see Section 3.2.1).

9. Given a string that represents a base X number, convert it to an equivalent string in
base Y, 2 < X,Y < 36. For example: “FF” in base X = 16 (hexadecimal) is “255” in
base Y7 = 10 (decimal) and “11111111” in base Y5 = 2 (binary). See Section 5.3.2.

10. Let’s define a ‘special word’ as a lowercase alphabet followed by two consecutive digits.

Given a string, replace all ‘special words’ of length 3 with 3 stars “***” e.g.
S = “line: a70 and z72 will be replaced, aa24 and a872 will not”
should be transformed into:
S = “line: *** and *** will be replaced, aa24 and a872 will not”.
11. Given a valid mathematical expression involving ‘+’, ') ¥’ </’ (", and ‘)’ in a single

line, evaluate that expression. (e.g. arather complicated but valid expression 3 + (8 -
7.5) * 10 / 5 - (2 + 5 x 7) should produce -33.0 when evaluated with standard
operator precedence.)

12

CHAPTER 1. INTRODUCTION (© Steven & Felix

1.2.5 Tip 5: Master the Art of Testing Code

You thought you nailed a particular problem. You identified its problem type, designed
the algorithm for it, verified that the algorithm (with the data structures it uses) will run
in time (and within memory limits) by considering the time (and space) complexity, and
implemented the algorithm, but your solution is still not Accepted (AC).

Depending on the programming contest, you may or may not get credit for solving the
problem partially. In ICPC, you will only get points for a particular problem if your team’s
code solves all the secret test cases for that problem. Other verdicts such as Presentation
Error (PE), Wrong Answer (WA), Time Limit Exceeded (TLE), Memory Limit Exceeded
(MLE), Run Time Error (RTE), etc. do not increase your team’s points. In current I0I
(2010-2012), the subtask scoring system is used. Test cases are grouped into subtasks, usually
simpler variants of the original task with smaller input bounds. You will only be credited
for solving a subtask if your code solves all test cases in it. You are given tokens that you
can use (sparingly) throughout the contest to view the judge’s evaluation of your code.

In either case, you will need to be able to design good, comprehensive and tricky test
cases. The sample input-output given in the problem description is by nature trivial and
therefore usually not a good means for determining the correctness of your code.

Rather than wasting submissions (and thus accumulating time or score penalties) in
ICPC or tokens in 101, you may want to design tricky test cases for testing your code on
your own machine®. Ensure that your code is able to solve them correctly (otherwise, there
is no point submitting your solution since it is likely to be incorrect—unless you want to test
the test data bounds).

Some coaches encourage their students to compete with each other by designing test
cases. If student A’s test cases can break student B’s code, then A will get bonus points.
You may want to try this in your team training :).

Here are some guidelines for designing good test cases from our experience.

These are typically the steps that have been taken by problem authors.

1. Your test cases should include the sample test cases since the sample output is guaran-
teed to be correct. Use ‘fc” in Windows or ‘diff’ in UNIX to check your code’s output
(when given the sample input) against the sample output. Avoid manual comparison
as humans are prone to error and are not good at performing such tasks, especially
for problems with strict output formats (e.g. blank line between test cases versus after
every test cases). To do this, copy and paste the sample input and sample output
from the problem description, then save them to files (named as ‘input’ and ‘output’
or anything else that is sensible). Then, after compiling your program (let’s assume
the executable’s name is the ‘g++’ default ‘a.out’), execute it with an I/O redirec-
tion: ‘./a.out < input > myoutput’. Finally, execute ‘diff myoutput output’ to
highlight any (potentially subtle) differences, if any exist.

2. For problems with multiple test cases in a single run (see Section 1.3.2), you should
include two identical sample test cases consecutively in the same run. Both must
output the same known correct answers. This helps to determine if you have forgotten
to initialize any variables—if the first instance produces the correct answer but the
second one does not, it is likely that you have not reset your variables.

3. Your test cases should include tricky corner cases. Think like the problem author and
try to come up with the worst possible input for your algorithm by identifying cases

8Programming contest environments differ from one contest to another. This can disadvantage contestants
who rely too much on fancy Integrated Development Environment (IDE) (e.g. Visual Studio, Eclipse, etc)
for debugging. It may be a good idea to practice coding with just a text editor and a compiler!

13

1.2. TIPS TO BE COMPETITIVE (© Steven & Felix

that are ‘hidden’ or implied within the problem description. These cases are usually
included in the judge’s secret test cases but not in the sample input and output. Corner
cases typically occur at extreme values such as N = 0, N = 1, negative values, large
final (and/or intermediate) values that does not fit 32-bit signed integer, etc.

4. Your test cases should include large cases. Increase the input size incrementally up to
the maximum input bounds stated in the problem description. Use large test cases with
trivial structures that are easy to verify with manual computation and large random
test cases to test if your code terminates in time and still produces reasonable output
(since the correctness would be difficult to verify here). Sometimes your program may
work for small test cases, but produces wrong answer, crashes, or exceeds the time
limit when the input size increases. If that happens, check for overflows, out of bound
errors, or improve your algorithm.

5. Though this is rare in modern programming contests, do not assume that the input
will always be nicely formatted if the problem description does not explicitly state it
(especially for a badly written problem). Try inserting additional whitespace (spaces,
tabs) in the input and test if your code is still able to obtain the values correctly
without crashing.

However, after carefully following all these steps, you may still get non-AC verdicts. In
ICPC, you (and your team) can actually consider the judge’s verdict and the leader board
(usually available for the first four hours of the contest) in determining your next course of
action. In TOT 2010-2012, contestants have a limited number of tokens to use for checking
the correctness of their submitted code against the secret test cases. With more experience
in such contests, you will be able to make better judgments and choices.

Exercise 1.2.4: Situational awareness
(mostly applicable in the ICPC setting—this is not as relevant in 10I).

1. You receive a WA verdict for a very easy problem. What should you do?

(a) Abandon this problem for another.
(

)
b) Improve the performance of your solution (code optimizations/better algorithm).
(c) Create tricky test cases to find the bug.
)

(d) (In team contests): Ask your team mate to re-do the problem.

2. You receive a TLE verdict for your O(N?) solution.
However, the maximum N is just 100. What should you do?

(a) Abandon this problem for another.
(b) Improve the performance of your solution (code optimizations/better algorithm).
(c) Create tricky test cases to find the bug.

3. Follow up to Question 2: What if the maximum N is 100.0007

4. Another follow up to Question 2: What if the maximum N is 1.000, the output only
depends on the size of input N, and you still have four hours of competition time left?

5. You receive an RTE verdict. Your code (seems to) execute perfectly on your machine.
What should you do?

14

CHAPTER 1. INTRODUCTION (© Steven & Felix

6. Thirty minutes into the contest, you take a glance at the leader board. There are many
other teams that have solved a problem X that your team has not attempted. What
should you do?

7. Midway through the contest, you take a glance at the leader board. The leading team
(assume that it is not your team) has just solved problem Y. What should you do?

8. Your team has spent two hours on a nasty problem. You have submitted several im-
plementations by different team members. All submissions have been judged incorrect.
You have no idea what’s wrong. What should you do?

9. There is one hour to go before the end of the contest. You have 1 WA code and 1 fresh
idea for another problem. What should you (or your team) do?

(a) Abandon the problem with the WA code, switch to the other problem in an
attempt to solve one more problem.

(b) Insist that you have to debug the WA code. There is not enough time to start
working on a new problem.

(¢) (InICPC): Print the WA code. Ask two other team members to scrutinize it while
you switch to that other problem in an attempt to solve two more problems.

1.2.6 Tip 6: Practice and More Practice

Competitive programmers, like real athletes, must train regularly and keep ‘programming-
fit’. Thus in our second last tip, we provide a list of several websites with resources that
can help improve your problem solving skill. We believe that success comes as a result of a
continuous effort to better yourself.

The University of Valladolid (UVa, from Spain) Online Judge [47] contains past ACM
contest problems (Locals, Regionals, and up to World Finals) plus problems from other
sources, including various problems from contests hosted by UVa. You can solve these
problems and submit your solutions to the Online Judge. The correctness of your program
will be reported as soon as possible. Try solving the problems mentioned in this book and
you might see your name on the top-500 authors rank list someday :-).

As of 24 May 2013, one needs to solve > 542 problems to be in the top-500. Steven is
ranked 27 (for solving 1674 problems) while Felix is ranked 37 (for solving 1487 problems)
out of ~ 149008 UVa users (and a total of ~ 4097 problems).

UVa’s ‘sister’ online judge is the ACM ICPC Live Archive [33] that contains almost all
recent ACM ICPC Regionals and World Final problem sets since year 2000. Train here if
you want to do well in future ICPCs. Note that in October 2011, about hundreds of Live
Archive problems (including the ones listed in the second edition of this book) are mirrored
in the UVa Online Judge.

UVa I]I'I“I'IE JLIE'QE = %ACM-lCPc Live Archive
I

Figure 1.2: Left: University of Valladolid Online Judge; Right: ACM ICPC Live Archive.

15

1.3. GETTING STARTED: THE EASY PROBLEMS (© Steven & Felix

The USA Computing Olympiad has a very useful training website [48] with online contests
to help you learn programming and problem solving skills. This is geared for IOI participants
more than for ICPC participants. Go straight to their website and train.

The Sphere Online Judge [61] is another online judge where qualified users can add their
problems. This online judge is quite popular in countries like Poland, Brazil, and Vietnam.
We have used this SPOJ to publish some of our self-authored problems.

A phere online judge

Figure 1.3: Left: USACO Training Gateway; Right: Sphere Online Judge

TopCoder arranges frequent ‘Single Round Match’ (SRM) [32] that consists of a few problems
to be solved in 1-2 hours. After the contest, you are given the chance to ‘challenge’ other
contestants code by supplying tricky test cases. This online judge uses a rating system (red,
yellow, blue, etc coders) to reward contestants who are really good at problem solving with a
higher rating as opposed to more diligent contestants who happen to solve a higher number
of easier problems.

1.2.7 Tip 7: Team Work (for ICPC)

This last tip is not something that is easy to teach, but here are some ideas that may be
worth trying for improving your team’s performance:

e Practice coding on blank paper. (This is useful when your teammate is using the
computer. When it is your turn to use the computer, you can then just type the code
as fast as possible rather than spending time thinking in front of the computer.)

e The ‘submit and print’ strategy: If your code gets an AC verdict, ignore the printout.
If it still is not AC, debug your code using that printout (and let your teammate uses
the computer for other problem). Beware: Debugging without the computer is not an
easy skill to master.

e If your teammate is currently coding his algorithm, prepare challenges for his code by
preparing hard corner-case test data (hopefully his code passes all those).

e The X-factor: Befriend your teammates outside of training sessions and contests.

1.3 Getting Started: The Easy Problems

Note: You can skip this section if you are a veteran participant of programming contests.
This section is meant for readers who are new with competitive programming.

1.3.1 Anatomy of a Programming Contest Problem
A programming contest problem usually contains the following components:
e Background story/problem description. Usually, the easier problems are writ-

ten to deceive contestants and made to appear difficult, for example by adding ‘ex-
tra information’ to create a diversion. Contestants should be able to filter out these

16

CHAPTER 1. INTRODUCTION (© Steven & Felix

unimportant details and focus on the essential ones. For example, the entire opening
paragraphs except the last sentence in UVa 579 - ClockHands are about the history of
the clock and is completely unrelated to the actual problem. However, harder problems
are usually written as succinctly as possible—they are already difficult enough without
additional embellishment.

e Input and Output description. In this section, you will be given details on how
the input is formatted and on how you should format your output. This part is usually
written in a formal manner. A good problem should have clear input constraints as the
same problem might be solvable with different algorithms for different input constraints
(see Table 1.4).

e Sample Input and Sample Output. Problem authors usually only provide trivial
test cases to contestants. The sample input/output is intended for contestants to check
their basic understanding of the problem and to verify if their code can parse the given
input using the given input format and produce the correct output using the given
output format. Do not submit your code to the judge if it does not even pass the given
sample input/output. See Section 1.2.5 about testing your code before submission.

e Hints or Footnotes. In some cases, the problem authors may drop hints or add
footnotes to further describe the problem.

1.3.2 Typical Input/Output Routines
Multiple Test Cases

In a programming contest problem, the correctness of your code is usually determined by
running your code against several test cases. Rather than using many individual test case
files, modern programming contest problems usually use one test case file with multiple test
cases included. In this section, we use a very simple problem as an example of a multiple-
test-cases problem: Given two integers in one line, output their sum in one line. We will
illustrate three possible input/output formats:

e The number of test cases is given in the first line of the input.
e The multiple test cases are terminated by special values (usually zeroes).

e The multiple test cases are terminated by the EOF (end-of-file) signal.

C/C++ Source Code | Sample Input | Sample Output
int TC, a, b; | 3 | 3
scanf ("%d", &TC); // number of test cases | 12 | 12
while (TC--) { // shortcut to repeat until O | 5 7 | 9
scanf ("%d %d", &a, &b); // compute answer | 6 3 |-
printf("%d\n", a + b); // on the fly | ——mmm e |
+ | |
int a, b; | 12 | 3
// stop when both integers are 0 | 57 | 12
while (scanf("%d %d", &a, &b), (a || b)) | 63 | 9
printf ("%d\n", a + b); | 00 [

17

1.3. GETTING STARTED: THE EASY PROBLEMS (© Steven & Felix

int a, b; | 12 3
// scanf returns the number of items read | 57 12
while (scanf("%d %d", &a, &b) == 2) | 6 3 9

// while (scanf("%d %d", &a, &b) !'= EOF) |
printf ("%d\n", a + b); |

|
|
|
// or you can check for EOF, i.e. | ———————— |————————
|
|

Case Numbers and Blank Lines

Some problems with multiple test cases require the output of each test case to be numbered
sequentially. Some also require a blank line after each test case. Let’s modify the simple
problem above to include the case number in the output (starting from one) with this output
format: “Case [NUMBER]: [ANSWER]” followed by a blank line for each test case. Assuming
that the input is terminated by the EOF signal, we can use the following code:

C/C++ Source Code | Sample Input | Sample Output
int a, b, ¢ = 1; | 12 | Case 1: 3
while (scanf("%d %d", &a, &b) !'= EOF) | 57 |
// notice the two ‘\n’ | 6 3 | Case 2: 12
printf("Case %d: %d\n\n", c++, a + b); | —m—mm e |
| Case 3: 9

Some other problems require us to output blank lines only between test cases. If we use the
approach above, we will end up with an extra new line at the end of our output, producing
unnecessary ‘Presentation Error’ (PE) verdict. We should use the following code instead:

C/C++ Source Code | Sample Input | Sample Output
int a, b, ¢ = 1; | 12 | Case 1: 3
while (scanf("%d %d", &a, &b) != EOF) { | 57 |
if (¢ > 1) printf("\n"); // 2nd/more cases | 6 3 | Case 2: 12
printf("Case %d: %d\n", c++, a + b); [|
} | | Case 3: 9

Variable Number of Inputs

Let’s change the simple problem above slightly. For each test case (each input line), we are
now given an integer k (k > 1), followed by k integers. Our task is now to output the sum
of these k integers. Assuming that the input is terminated by the EOF signal and we do not
require case numbering, we can use the following code:

C/C++ Source Code | Sample Input | Sample Output

CHAPTER 1. INTRODUCTION (© Steven & Felix

int k, ans, v; | 11 | 1
while (scanf("%d", &k) !'= EOF) { | 2 34 | 7
ans = 0; | 3811 | 10
while (k--) { scanf("%d", &v); ans +=v; } | 47 2 9 3 | 21
printf ("%d\n", ans); | 511111 |65
} | ——————— - R

Exercise 1.3.1*: What if the problem author decides to make the input a little more
problematic? Instead of an integer k at the beginning of each test case, you are now required
to sum all integers in each test case (each line). Hint: See Section 6.2.

Exercise 1.3.2%: Rewrite all C/C++ source code in this Section 1.3.2 in Javal

1.3.3 Time to Start the Journey

There is no better way to begin your journey in competitive programming than to solve a
few programming problems. To help you pick problems to start with among the =~ 4097
problems in UVa online judge [47], we have listed some of the easiest Ad Hoc problems
below. More details about Ad Hoc problems will be presented in the next Section 1.4.

e Super Easy
You should get these problems ACY in under 7 minutes'® each! If you are new to com-
petitive programming, we strongly recommend that you start your journey by solving
some problems from this category after completing the previous Section 1.3.2. Note:
Since each category contains numerous problems for you to try, we have highlighted a
maximum of three (3) must try * problems in each category. These are the problems
that, we think, are more interesting or are of higher quality.

e Easy
We have broken up the ‘Easy’ category into two smaller ones. The problems in this
category are still easy, but just ‘a bit” harder than the ‘Super Easy’ ones.

e Medium: One Notch Above Easy
Here, we list some other Ad Hoc problems that may be slightly trickier (or longer)
than those in the ‘Easy’ category.

e Super Easy Problems in the UVa Online Judge (solvable in under 7 minutes)

. UVa 00272 - TEX Quotes (replace all double quotes to TEX() style quotes)
UVa 01124 - Celebrity Jeopardy (LA 2681, just echo/re-print the input again)
UVa 10550 - Combination Lock (simple, do as asked)

UVa 11044 - Searching for Nessy (one liner code/formula exists)

UVa 11172 - Relational Operators * (ad hoc, very easy, one liner)
UVa 11364 - Parking (linear scan to get [& r, answer = 2 (r — 1))

UVa 11498 - Division of Nlogonia * (just use if-else statements)

NS ot W

9Do not feel bad if you are unable to do so. There can be many reasons why a code may not get AC.
10Seven minutes is just a rough estimate. Some of these problems can be solved with one-liners.

19

1.3. GETTING STARTED: THE EASY PROBLEMS (© Steven & Felix

8. UVa 11547 - Automatic Answer (a one liner O(1) solution exists)

9. UVa 11727 - Cost Cutting * (sort the 3 numbers and get the median)
10. UVa 12250 - Language Detection (LA 4995, KualaLumpurl0, if-else check)
11. UVa 12279 - Emoogle Balance (simple linear scan)

12. UVa 12289 - One-Two-Three (just use if-else statements)

13. UVa 12872 - Packing for Holiday (just check if all L, W, H < 20)
14. UVa 12403 - Save Setu (straightforward)

15. UVa 12577 - Hagj-e- Akbar (straightforward)

e FEasy (just ‘a bit’ harder than the ‘Super Easy’ ones)
1. UVa 00621 - Secret Research (case analysis for only 4 possible outputs)

2. UVa 10114 - Loansome Car Buyer * (just simulate the process)

3. UVa 10300 - Ecological Premium (ignore the number of animals)

4. UVa 10963 - The Swallowing Ground (for two blocks to be mergable, the
gaps between their columns must be the same)

5. UVa 11332 - Summing Digits (simple recursions)

6. UVa 11559 - Event Planning * (one linear pass)

7. UVa 11679 - Sub-prime (check if after simulation all banks have > 0 reserve)

8. UVa 11764 - Jumping Mario (one linear scan to count high+low jumps)

9. UVa 11799 - Horror Dash * (one linear scan to find the max value)

10. UVa 11942 - Lumberjack Sequencing (check if input is sorted asc/descending)
11. UVa 12015 - Google is Feeling Lucky (traverse the list twice)

12. UVa 12157 - Tariff Plan (LA 4405, KualaLumpur08, compute and compare)
13. UVa 12468 - Zapping (easy; there are only 4 possibilities)

14. UVa 12503 - Robot Instructions (easy simulation)

15. UVa 12554 - A Special ... Song (simulation)

16. 10T 2010 - Cluedo (use 3 pointers)

17. 101 2010 - Memory (use 2 linear pass)

e Medium: One Notch Above Easy (may take 15-30 minutes, but not too hard)
1. UVa 00119 - Greedy Gift Givers (simulate give and receive process)

2. UVa 00573 - The Snail * (simulation, beware of boundary cases!)
3. UVa 00661 - Blowing Fuses (simulation)
4. UVa 10141 - Request for Proposal * (solvable with one linear scan)
5. UVa 10324 - Zeros and Ones (simplify using 1D array: change counter)
6. UVa 10424 - Love Calculator (just do as asked)
7. UVa 10919 - Prerequisites? (process the requirements as the input is read)
8. UVa 11507 - Bender B. Rodriguez ... * (simulation, if-else)
9. UVa 11586 - Train Tracks (TLE if brute force, find the pattern)

10. UVa 11661 - Burger Time? (linear scan)

11. UVa 11683 - Laser Sculpture (one linear pass is enough)

12. UVa 11687 - Digits (simulation; straightforward)

13. UVa 11956 - Brain®**** (simulation; ignore ‘.”)

14. UVa 12478 - Hardest Problem ... (try one of the eight names)

15. 10T 2009 - Garage (simulation)

16. 10T 2009 - POI (sort)

20

CHAPTER 1. INTRODUCTION (© Steven & Felix

1.4 The Ad Hoc Problems

We will terminate this chapter by discussing the first proper problem type in the ICPCs
and IOIs: The Ad Hoc problems. According to USACO [48], the Ad Hoc problems are
problems that ‘cannot be classified anywhere else’ since each problem description and its
corresponding solution are ‘unique’. Many Ad Hoc problems are easy (as shown in Section
1.3), but this does not apply to all Ad Hoc problems.

Ad Hoc problems frequently appear in programming contests. In ICPC, ~ 1-2 problems
out of every ~ 10 problems are Ad Hoc problems. If the Ad Hoc problem is easy, it will
usually be the first problem solved by the teams in a programming contest. However, there
were cases where solutions to the Ad Hoc problems were too complicated to implement,
causing some teams to strategically defer them to the last hour. In an ICPC regional contest
with about 60 teams, your team would rank in the lower half (rank 30-60) if you can only
solve Ad Hoc problems.

In TOT 2009 and 2010, there has been 1 easy task per competition day'!, usually an (Easy)
Ad Hoc task. If you are an IOI contestant, you will definitely not win any medals for just
solving the 2 easy Ad Hoc tasks over the 2 competition days. However, the faster you can
clear these 2 easy tasks, the more time that you will have to work on the other 2 x 3 =6
challenging tasks.

We have listed many Ad Hoc problems that we have solved in the UVa Online Judge
[47] in the several categories below. We believe that you can solve most of these problems
without using the advanced data structures or algorithms that will be discussed in the later
chapters. Many of these Ad Hoc problems are ‘simple’ but some of them maybe ‘tricky’.
Try to solve a few problems from each category before reading the next chapter.

Note: A small number of problems, although listed as part of Chapter 1, may require
knowledge from subsequent chapters, e.g. knowledge of linear data structures (arrays) in
Section 2.2, knowledge of backtracking in Section 3.2, etc. You can revisit these harder Ad
Hoc problems after you have understood the required concepts.

The categories:

e Game (Card)

There are lots of Ad Hoc problems involving popular games. Many are related to card
games. You will usually need to parse the input strings (see Section 6.3) as playing
cards have both suits (D/Diamond/{, C/Club/é&, H/Heart/Q, and S/Spades/#) and
ranks (usually: 2 <3 <...<9 < T/Ten < J/Jack < Q/Queen < K/King < A/Ace'?).
It may be a good idea to map these troublesome strings to integer indices. For example,
one possible mapping is to map D2 — 0, D3 — 1, ..., DA — 12, C2 — 13, C3 — 14,
..., SA — 51. Then, you can work with the integer indices instead.

e Game (Chess)
Chess is another popular game that sometimes appears in programming contest prob-
lems. Some of these problems are Ad Hoc and listed in this section. Some of them are
combinatorial with tasks like counting how many ways there are to place 8-queens in
8 x 8 chess board. These are listed in Chapter 3.

e Game (Others), easier and harder (or more tedious)
Other than card and chess games, many other popular games have made their way into
programming contests: Tic Tac Toe, Rock-Paper-Scissors, Snakes/Ladders, BINGO,

"' This was no longer true in IOI 2011-2012 as the easier scores are inside subtask 1 of each task.
12In some other arrangements, A/Ace < 2.

21

1.4.

THE AD HOC PROBLEMS (© Steven & Felix

Bowling, etc. Knowing the details of these games may be helpful, but most of the
game rules are given in the problem description to avoid disadvantaging contestants
who are unfamiliar with the games.

Problems related to Palindromes

These are also classic problems. A palindrome is a word (or a sequence) that can
be read the same way in either direction. The most common strategy to check if a
word is palindromic is to loop from the first character to the middle one and check
if the characters match in the corresponding position from the back. For example,
‘ABCDCBA'’ is a palindrome. For some harder palindrome-related problems, you
may want to check Section 6.5 for Dynamic Programming solutions.

Problems related to Anagrams

This is yet another class of classic problems. An anagram is a word (or phrase) whose
letters can be rearranged to obtain another word (or phrase). The common strategy
to check if two words are anagrams is to sort the letters of the words and compare
the results. For example, take wordA = ‘cab’, wordB = ‘bca’. After sorting, wordA
= ‘abc’ and wordB = ‘abc’ too, so they are anagrams. See Section 2.2 for various
sorting techniques.

Interesting Real Life Problems, easier and harder (or more tedious)

This is one of the most interesting problem categories in the UVa Online Judge. We
believe that real life problems like these are interesting to those who are new to Com-
puter Science. The fact that we write programs to solve real life problems can be
an additional motivational boost. Who knows, you might stand to gain new (and
interesting) information from the problem description!

Ad Hoc problems involving Time

These problems utilize time concepts such as dates, times, and calendars. These are
also real life problems. As mentioned earlier, these problems can be a little more
interesting to solve. Some of these problems will be far easier to solve if you have
mastered the Java GregorianCalendar class as it has many library functions that deal
with time.

‘Time Waster’ problems

These are Ad Hoc problems that are written specifically to make the required solution
long and tedious. These problems, if they do appear in a programming contest, would
determine the team with the most efficient coder—someone who can implement com-
plicated but still accurate solutions under time constraints. Coaches should consider
adding such problems in their training programmes.

Ad Hoc problems in other chapters
There are many other Ad Hoc problems which we have shifted to other chapters since
they required knowledge above basic programming skills.

— Ad Hoc problems involving the usage of basic linear data structures (especially
arrays) are listed in Section 2.2.

— Ad Hoc problems involving mathematical computation are listed in Section 5.2.
— Ad Hoc problems involving string processing are listed in Section 6.3.

— Ad Hoc problems involving basic geometry are listed in Section 7.2.

— Ad Hoc problems listed in Chapter 9.

22

CHAPTER 1. INTRODUCTION (© Steven & Felix

Tips: After solving a number of programming problems, you begin to realize a pat-
tern in your solutions. Certain idioms are used frequently enough in competitive pro-
gramming implementation for shortcuts to be useful. From a C/C++ perspective,
these idioms might include: Libraries to be included (cstdio, cmath, cstring, etc),
data type shortcuts (ii, vii, vi, etc), basic I/O routines (freopen, multiple input for-
mat, etc), loop macros (e.g. #define REP(i, a, b) for (int i = int(a); i <=
int(b); i++), etc), and a few others. A competitive programmer using C/C++ can
store these in a header file like ‘competitive.h’. With such a header, the solution to
every problem begins with a simple #include<competitive.h>. However, this tips
should not be used beyond competitive programming, especially in software industry.

Programming Exercises related to Ad Hoc problems:

e Game (Card)

1. UVa 00162 - Beggar My Neighbour (card game simulation; straightforward)
UVa 00462 - Bridge Hand Evaluator * (simulation; card)

UVa 00555 - Bridge Hands (card game)

UVa 10205 - Stack 'em Up (card game)

UVa 10315 - Poker Hands (tedious problem)

UVa 10646 - What is the Card? * (shuffle cards with some rule and
then get certain card)

S ok W

UVa 11225 - Tarot scores (another card game)

® N

. UVa 11678 - Card’s Exchange (actually just an array manipulation problem)
9. UVa 12247 - Jollo * (interesting card game; simple, but requires good
logic to get all test cases correct)
e Game (Chess)

1. UVa 00255 - Correct Move (check the validity of chess moves)
UVa 00278 - Chess * (ad hoc, chess, closed form formula exists)
UVa 00696 - How Many Knights * (ad hoc, chess)

UVa 10196 - Check The Check (ad hoc chess game, tedious)

UVa 10284 - Chessboard in FEN * (FEN = Forsyth-Edwards Notation
is a standard notation for describing board positions in a chess game)

6. UVa 10849 - Move the bishop (chess)
7. UVa 11494 - Queen (ad hoc, chess)

e Game (Others), Easier

1. UVa 00340 - Master-Mind Hints (determine strong and weak matches)

UVa 00489 - Hangman Judge * (just do as asked)

UVa 00947 - Master Mind Helper (similar to UVa 340)

UVa 10189 - Minesweeper * (simulate Minesweeper, similar to UVa 10279)
UVa 10279 - Mine Sweeper (a 2D array helps, similar to UVa 10189)

UVa 10409 - Die Game (just simulate the die movement)

UVa 10530 - Guessing Game (use a 1D flag array)

UVa 11459 - Snakes and Ladders * (simulate it, similar to UVa 647)
UVa 12239 - Bingo (try all 90% pairs, see if all numbers in [0..N] are there)

CUk N

© 0N oo

23

1.4. THE AD HOC PROBLEMS (© Steven & Felix

e Game (Others), Harder (more tedious)

1. UVa 00114 - Simulation Wizardry (simulation of pinball machine)

2. UVa 00141 - The Spot Game (simulation, pattern check)

3. UVa 00220 - Othello (follow the game rules, a bit tedious)

4. UVa 00227 - Puzzle (parse the input, array manipulation)

5. UVa 00232 - Crossword Answers (complex array manipulation problem)

6. UVa 00339 - SameGame Simulation (follow problem description)

7. UVa 00379 - HI-Q (follow problem description)

8. UVa 00584 - Bowling * (simulation, games, reading comprehension)

9. UVa 00647 - Chutes and Ladders (childhood board game, also see UVa 11459)
10. UVa 10363 - Tic Tac Toe (check validity of Tic Tac Toe game, tricky)
11. UVa 10443 - Rock, Scissors, Paper * (2D arrays manipulation)
12. UVa 10813 - Traditional BINGO * (follow the problem description)

13. UVa 10903 - Rock-Paper-Scissors ... (count win+losses, output win average)
e Palindrome
1. UVa 00353 - Pesky Palindromes (brute force all substring)
UVa 00401 - Palindromes * (simple palindrome check)
UVa 10018 - Reverse and Add (ad hoc, math, palindrome check)
UVa 10945 - Mother Bear * (palindrome)
UVa 11221 - Magic Square Palindrome * (we deal with a matrix)
6. UVa 11309 - Counting Chaos (palindrome check)
e Anagram
1. UVa 00148 - Anagram Checker (uses backtracking)
UVa 00156 - Ananagram * (easier with algorithm: :sort)

Gt W

UVa 00195 - Anagram * (easier with algorithm: :next_permutation)
UVa 00454 - Anagrams * (anagram)
UVa 00630 - Anagrams (II) (ad hoc, string)
UVa 00642 - Word Amalgamation (go through the given small dictionary for
the list of possible anagrams)

7. UVa 10098 - Generating Fast, Sorted ... (very similar to UVa 195)
e Interesting Real Life Problems, Easier

1. UVa 00161 - Traffic Lights * (this is a typical situation on the road)

AN

2. UVa 00187 - Transaction Processing (an accounting problem)
3. UVa 00362 - 18,000 Seconds Remaining (typical file download situation)
4. UVa 00637 - Booklet Printing * (application in printer driver software)
5. UVa 00857 - Quantiser (MIDI, application in computer music)
6. UVa 10082 - WERTYU (this typographical error happens to us sometimes)
7. UVa 10191 - Longest Nap (you may want to apply this to your own schedule)
8. UVa 10528 - Major Scales (music knowledge is in the problem description)
9. UVa 10554 - Calories from Fat (are you concerned with your weights?)
10. UVa 10812 - Beat the Spread * (be careful with boundary cases!)
11. UVa 11530 - SMS Typing (handphone users encounter this problem everyday)
12. UVa 11945 - Financial Management (a bit output formatting)
13. UVa 11984 - A Change in Thermal Unit (F° to C° conversion and vice versa)
14. UVa 12195 - Jingle Composing (count the number of correct measures)
15. UVa 12555 - Baby Me (one of the first question asked when a new baby is

born; requires a bit of input processing)

24

CHAPTER 1.

INTRODUCTION © Steven & Felix

e Interesting Real Life Problems, Harder (more tedious)

1.
2.
3.

© 0N T

UVa 00139 - Telephone Tangles (calculate phone bill; string manipulation)
UVa 00145 - Gondwanaland Telecom (similar nature with UVa 139)

UVa 00333 - Recognizing Good ISBNs (note: this problem has ‘buggy’ test
data with blank lines that potentially cause lots of ‘Presentation Errors’)

UVa 00346 - Getting Chorded (musical chord, major/minor)

UVa 00403 - Postscript * (emulation of printer driver, tedious)

UVa 00447 - Population Ezplosion (life simulation model)

UVa 00448 - OOPS (tedious ‘hexadecimal’ to ‘assembly language’ conversion)

UVa 00449 - Majoring in Scales (easier if you have a musical background)

UVa 00457 - Linear Cellular Automata (simplified ‘game of life’ simulation;
similar idea with UVa 447; explore the Internet for that term)

10. UVa 00538 - Balancing Bank Accounts (the problem’s premise is quite true)

11. UVa 00608 - Counterfeit Dollar * (classical problem)

12. UVa 00706 - LC-Display (what we see in old digital display)

13. UVa 01061 - Consanguine Calculations * (LA 3736 - WorldFinals Tokyo07,
consanguine = blood; this problem asks possible combinations of blood types
and Rh factor; solvable by trying all eight possible blood + Rh types with
the information given in the problem description)

14. UVa 10415 - Eb Alto Saxophone Player (about musical instruments)

15. UVa 10659 - Fitting Text into Slides (typical presentation programs do this)

16. UVa 11223 - O: dah, dah, dah (tedious morse code conversion)

17. UVa 11743 - Credit Check (Luhn’s algorithm to check credit card numbers;
search the Internet to learn more)

18. UVa 12342 - Tax Calculator (tax computation can be tricky indeed)

e Time

1. UVa 00170 - Clock Patience (simulation, time)

e A T

[o T S S e e
T O U A W — O

— =
© »

UVa 00300 - Maya Calendar (ad hoc, time)

UVa 00579 - Clock Hands * (ad hoc, time)

UVa 00893 - Y3K * (use Java GregorianCalendar; similar to UVa 11356)
UVa 10070 - Leap Year or Not Leap ... (more than ordinary leap years)
UVa 10339 - Watching Watches (find the formula)

UVa 10371 - Time Zones (follow the problem description)

UVa 10683 - The decadary watch (simple clock system conversion)

UVa 11219 - How old are you? (be careful with boundary cases!)
UVa 11356 - Dates (very easy if you use Java GregorianCalendar)

. UVa 11650 - Mirror Clock (some mathematics required)

. UVa 11677 - Alarm Clock (similar idea with UVa 11650)

. UVa 11947 - Cancer or Scorpio * (easier with Java GregorianCalendar)

. UVa 11958 - Coming Home (be careful with ‘past midnight’)

. UVa 12019 - Doom’s Day Algorithm (Gregorian Calendar; get DAY_OF_WEEK)
. UVa 12136 - Schedule of a Married Man (LA 4202, Dhaka08, check time)

UVa 12148 - Electricity (easy with Gregorian Calendar; use method ‘add’ to
add one day to previous date and see if it is the same as the current date)

UVa 12439 - February 29 (inclusion-exclusion; lots of corner cases; be careful)
UVa 12531 - Hours and Minutes (angles between two clock hands)

25

1.4. THE AD HOC PROBLEMS (© Steven & Felix

e ‘Time Waster’ Problems

©® e T e w

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

UVa 00144 - Student Grants (simulation)

UVa 00214 - Code Generation (just simulate the process; be careful with
subtract (-), divide (/), and negate (@), tedious)

UVa 00335 - Processing MX Records (simulation)

UVa 00337 - Interpreting Control ... (simulation, output related)

UVa 00349 - Transferable Voting (II) (simulation)

UVa 00381 - Making the Grade (simulation)

UVa 00405 - Message Routing (simulation)

UVa 00556 - Amazing * (simulation)

UVa 00603 - Parking Lot (simulate the required process)

UVa 00830 - Shark (very hard to get AC, one minor error = WA)

UVa 00945 - Loading a Cargo Ship (simulate the given cargo loading process)
UVa 10033 - Interpreter (adhoc, simulation)

UVa 10134 - AutoFish (must be very careful with details)

UVa 10142 - Australian Voting (simulation)

UVa 10188 - Automated Judge Script (simulation)

UVa 10267 - Graphical Editor (simulation)

UVa 10961 - Chasing After Don Giovanni (tedious simulation)

UVa 11140 - Little Ali’s Little Brother (ad hoc)

UVa 11717 - Energy Saving Micro... (tricky simulation)

UVa 12060 - All Integer Average * (LA 3012, Dhaka04, output format)
UVa 12085 - Mobile Casanova * (LA 2189, Dhaka06, watch out for PE)

UVa 12608 - Garbage Collection (simulation with several corner cases)

26

CHAPTER 1. INTRODUCTION (© Steven & Felix

1.5 Solutions to Non-Starred Exercises

Exercise 1.1.1: A simple test case to break greedy algorithms is N = 2,{(2,0), (2, 1), (0,0),
(4,0)}. A greedy algorithm will incorrectly pair {(2,0), (2,1)} and {(0,0), (4,0)} with a 5.000
cost while the optimal solution is to pair {(0,0),(2,0)} and {(2,1), (4,0)} with cost 4.236.

Exercise 1.1.2: For a Naive Complete Search like the one outlined in the body text, one
needs up to 16Cy x14 Cy X ... X9 Cy for the largest test case with N = 8—far too large.

However, there are ways to prune the search space so that Complete Search can still work.
For an extra challenge, attempt Exercise 1.1.3%*!

Exercise 1.2.1: The complete Table 1.3 is shown below.

UVa Title Problem Type Hint

10360 Rat Attack Complete Search or DP Section 3.2
10341 Solve It Divide & Conquer (Bisection Method) Section 3.3
11292 Dragon of Loowater ~ Greedy (Non Classical) Section 3.4
11450 Wedding Shopping ~ DP (Non Classical) Section 3.5
10911 Forming Quiz Teams DP with bitmasks (Non Classical) Section 8.3.1
11635 Hotel Booking Graph (Decomposition: Dijkstra’s + BFS) Section 8.4
11506 Angry Programmer Graph (Min Cut/Max Flow) Section 4.6
10243 Fire! Fire!! Firel!l DP on Tree (Min Vertex Cover) Section 4.7.1
10717 Mint Decomposition: Complete Search + Math Section 8.4
11512 GATTACA String (Suffix Array, LCP, LRS) Section 6.6

10065 Useless Tile Packers — Geometry (Convex Hull + Area of Polygon) Section 7.3.7

Exercise 1.2.2: The answers are:

1. (b) Use a priority queue data structure (heap) (Section 2.3).
2. (b) Use 2D Range Sum Query (Section 3.5.2).

3. If list L is static, (b) Simple Array that is pre-processed with Dynamic Programming
(Section 2.2 & 3.5). If list L is dynamic, then (g) Fenwick Tree is a better answer
(easier to implement than (f) Segment Tree).

4. (a) Yes, a complete search is possible (Section 3.2).

5. (a) O(V + E) Dynamic Programming (Section 3.5, 4.2.5, & 4.7.1).
However, (¢) O((V + E)logV) Dijkstra’s algorithm is also possible since the extra
O(log V) factor is still ‘small’ for V' up to 100K

6. (a) Sieve of Eratosthenes (Section 5.5.1).

7. (b) The naive approach above will not work. We must (prime) factorize n! and m and
see if the (prime) factors of m can be found in the factors of n! (Section 5.5.5).

8. (b) No, we must find another way. First, find the Convex Hull of the N points in
O(nlogn) (Section 7.3.7). Let the number of points in CH(S) = k. As the points are
randomly scattered, k£ will be much smaller than N. Then, find the two farthest points
by examining all pairs of points in the CH(S) in O(k?).

9. (b) The naive approach is too slow. Use KMP or Suffix Array (Section 6.4 or 6.6)!

27

1.5. SOLUTIONS TO NON-STARRED EXERCISES (© Steven & Felix

Exercise 1.2.3: The Java code is shown below:

// Java code for task 1, assuming all necessary imports have been done
class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double d = sc.nextDouble();
System.out.printf ("%7.3f\n", d); // yes, Java has printf too!

T}

// C++ code for task 2, assuming all necessary includes have been done
int main() {

double pi = 2 * acos(0.0); // this is a more accurate way to compute pi
int n; scanf("%d", &n);
printf ("%.*1f\n", n, pi); // this is the way to manipulate field width

3

// Java code for task 3, assuming all necessary imports have been done
class Main {
public static void main(String[] args) {
String[] names = new Stringl]
{"", "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
Calendar calendar = new GregorianCalendar (2010, 7, 9); // 9 August 2010
// note that month starts from O, so we need to put 7 instead of 8

System.out.println(names[calendar.get(Calendar.DAY_OF_WEEK)]); // "Wed"

3

// C++ code for task 4, assuming all necessary includes have been done
#define ALL(x) x.begin(), x.end()
#define UNIQUE(c) (c).resize(unique(ALL(c)) - (c).begin())

int main() {
int all = {1, 2, 2, 2, 3, 3, 2, 2, 1};
vector<int> v(a, a + 9);
sort (ALL(v)); UNIQUE(v);
for (int i = 0; i < (int)v.size(); i++) printf("%d\n", v[il);

}
// C++ code for task 5, assuming all necessary includes have been done
typedef pair<int, int> ii; // we will utilize the natural sort order

typedef pair<int, ii> iii; // of the primitive data types that we paired

int main() {

iii A = make_pair(ii(5, 24), -1982); // reorder DD/MM/YYYY
iii B = make_pair(ii(5, 24), -1980); // to MM, DD,
iii C = make_pair(ii(11, 13), -1983); // and then use NEGATIVE YYYY

vector<iii> birthdays;
birthdays.push_back(A); birthdays.push_back(B); birthdays.push_back(C);
sort (birthdays.begin(), birthdays.end()); // that’s all :)

28

CHAPTER 1. INTRODUCTION (© Steven & Felix

// C++ code for task 6, assuming all necessary includes have been done
int main() {

int n = 5, L[] = {10, 7, 5, 20, 8}, v = 7;

sort(L, L + n);

printf ("%d\n", binary_search(L, L + n, v));
}

// C++ code for task 7, assuming all necessary includes have been done
int main() {
int p[10], N = 10; for (int i = 0; i < N; i++) pl[i] = i;

do {
for (int i = 0; i < N; i++) printf("Yc ", ’A’ + p[il);
printf ("\n");

}

while (next_permutation(p, p + N));

3

// C++ code for task 8, assuming all necessary includes have been done
int main() {

int p[20], N = 20;
for (int i = 0; 1 < N; i++) pl[i]l = i;
for (int i = 0; i < (1 << N); i++) {

for (int j = 0; j < N; j++)

if (A& (1 <<) // if bit j is on
printf("%d ", pl(il); // this is part of set
printf("\n");

I

// Java code for task 9, assuming all necessary imports have been done
class Main {
public static void main(String[] args) {
String str = "FF"; int X = 16, Y = 10;
System.out.println(new BigInteger(str, X).toString(Y));
)

// Java code for task 10, assuming all necessary imports have been done
class Main {
public static void main(String[] args) {
String S = "line: a70 and z72 will be replaced, aa24 and a872 will not";
System.out.println(S.replaceAll("("|)+[a-z] [0-91[0-91([$)+", " *xx "));
)

// Java code for task 11, assuming all necessary imports have been done
class Main {
public static void main(String[] args) throws Exception {
ScriptEngineManager mgr = new ScriptEngineManager();
ScriptEngine engine = mgr.getEngineByName ("JavaScript"); // "cheat"
Scanner sc = new Scanner(System.in);
while (sc.hasNextLine()) System.out.println(engine.eval(sc.nextLine()));

I

29

1.5. SOLUTIONS TO NON-STARRED EXERCISES (© Steven & Felix

Exercise 1.2.4: Situational considerations are in brackets:

1. You receive a WA verdict for a very easy problem. What should you do?

(a) Abandon this problem for another. (Not ok, your team will lose out.)

(b) Improve the performance of your solution. (Not useful.)

(c) Create tricky test cases to find the bug. (The most logical answer.)

(d) (In team contests): Ask your team mate to re-do the problem. (This could
be feasible as you might have had some wrong assumptions about the
problem. Thus, you should refrain from telling the details about the
problem to your team mate who will re-do the problem. Still, your
team will lose precious time.)

2. You receive a TLE verdict for your O(N?) solution.
However, the maximum N is just 100. What should you do?

(a) Abandon this problem for another. (Not ok, your team will lose out.)

(b) Improve the performance of your solution. (Not ok, we should not get TLE
with an O(N?) algorithm if N < 400.)

(c) Create tricky test cases to find the bug. (This is the answer—maybe your
program runs into an accidental infinite loop in some test cases.)

3. Follow up to Question 2: What if the maximum N is 100.0007
(If N > 400, you may have no choice but to improve the performance of the
current algorithm or use a another faster algorithm.)

4. Another follow up to Question 2: What if the maximum N is 1.000, the output only
depends on the size of input N, and you still have four hours of competition time left?
(If the output only depends on N, you may be able to pre-calculate all pos-
sible solutions by running your O(N?) algorithm in the background, letting
your team mate use the computer first. Once your O(N?) solution termi-
nates, you have all the answers. Submit the O(1) answer instead if it does
not exceed ‘source code size limit’ imposed by the judge.)

5. You receive an RTE verdict. Your code (seems to) execute perfectly on your machine.
What should you do?
(The most common causes of RTEs are usually array sizes that are too
small or stack overflow/infinite recursion errors. Design test cases that can
trigger these errors in your code.)

6. Thirty minutes into the contest, you take a glance at the leader board. There are many
other teams that have solved a problem X that your team has not attempted. What
should you do?

(One team member should immediately attempt problem X as it may be
relatively easy. Such a situation is really a bad news for your team as it is
a major set-back to getting a good rank in the contest.)

7. Midway through the contest, you take a glance at the leader board. The leading team
(assume that it is not your team) has just solved problem Y. What should you do?
(If your team is not the ‘pace-setter’, then it is a good idea to ‘ignore’ what
the leading team is doing and concentrate instead on solving the problems
that your team has identified to be ‘solvable’. By mid-contest your team
must have read all the problems in the problem set and roughly identified
the problems solvable with your team’s current abilities.)

30

CHAPTER 1. INTRODUCTION (© Steven & Felix

8. Your team has spent two hours on a nasty problem. You have submitted several im-

plementations by different team members. All submissions have been judged incorrect.
You have no idea what’s wrong. What should you do?
(It is time to give up solving this problem. Do not hog the computer, let
your team mate solves another problem. Either your team has really mis-
understood the problem or in a very rare case, the judge solution is actually
wrong. In any case, this is not a good situation for your team.)

9. There is one hour to go before the end of the contest. You have 1 WA code and 1 fresh
idea for another problem. What should you (or your team) do?
(In chess terminology, this is called the ‘end game’ situation.)

(a) Abandon the problem with the WA code, switch to the other problem in an
attempt to solve one more problem.(OK in individual contests like IOI.)

(b) Insist that you have to debug the WA code. There is not enough time to start
working on a new problem. (If the idea for another problem involves com-
plex and tedious code, then deciding to focus on the WA code may be
a good idea rather than having two incomplete/‘non AC’ solutions.)

(¢) (InICPC): Print the WA code. Ask two other team members to scrutinize it while
you switch to that other problem in an attempt to solve two more problems.
(If the solution for the other problem can be coded in less than 30
minutes, then implement it while your team mates try to find the bug
for the WA code by studying the printed copy.)

l)

" The Dmgn & .
Cobwimei | Analysis of Algorithms ‘
X 5 3
£ kL & i 'Q' ‘\‘ ‘
ntze

Anany Levitin
e

vt €r cammating by vt svanvers [N R

Programming
Challenges

Art of Programming
Contest

The
Programining
Contest
Tralning
Minwal

Steven §. Skinia
Migaed A, Revills

Hackers F === [COMPUTATIONAL
Delicht _ | ALcormHMS IN || GEOMETRY
' ? ' BIOINFORMATICS

Computational
Geometry

WINGKIN SUND

Figure 1.4: Some references that inspired the authors to write this book

31

1.6. CHAPTER NOTES (© Steven & Felix

1.6 Chapter Notes

This chapter, as well as subsequent chapters are supported by many textbooks (see Figure
1.4 in the previous page) and Internet resources. Here are some additional references:

e To improve your typing skill as mentioned in Tip 1, you may want to play the many
typing games available online.

e Tip 2 is adapted from the introduction text in USACO training gateway [48].
e More details about Tip 3 can be found in many CS books, e.g. Chapter 1-5, 17 of [7].

e Online references for Tip 4:
http://www.cppreference.com and http://www.sgi.com/tech/stl/ for C++ STL;
http://docs.oracle.com/javase/7/docs/api/ for Java APIL
You do not have to memorize all library functions, but it is useful to memorize functions
that you frequently use.

e For more insights on better testing (Tip 5), a slight detour to software engineering
books may be worth trying.

e There are many other Online Judges apart from those mentioned in Tip 6, e.g.
— Codeforces, http://codeforces.com/,

Peking University Online Judge, (POJ) http://poj.org,
Zhejiang University Online Judge, (ZOJ) http://acm.zju.edu.cn,

— Tianjin University Online Judge, http://acm.tju.edu.cn/toj,

Ural State University (Timus) Online Judge, http://acm.timus.ru,
— URI Online Judge, http://www.urionlinejudge.edu.br, etc.

e For a note regarding team contest (Tip 7), read [16].

In this chapter, we have introduced the world of competitive programming to you. However,
a competitive programmer must be able to solve more than just Ad Hoc problems in a
programming contest. We hope that you will enjoy the ride and fuel your enthusiasm by
reading up on and learning new concepts in the other chapters of this book. Once you have
finished reading the book, re-read it once more. On the second time, attempt and solve the
~ 238 written exercises and the ~ 1675 programming exercises.

Statistics First Edition Second Edition Third Edition
Number of Pages 13 19 (+46%) 32 (+68%)
Written Exercises 4 4 6+3*=9 (+125%)
Programming Exercises 34 160 (+371%) 173 (+8%)

32

Chapter 2

Data Structures and Libraries

If I have seen further it is only by standing on the shoulders of giants.
— Isaac Newton

2.1 Overview and Motivation

A data structure (DS) is a means of storing and organizing data. Different data structures
have different strengths. So when designing an algorithm, it is important to pick one that
allows for efficient insertions, searches, deletions, queries, and /or updates, depending on what
your algorithm needs. Although a data structure does not in itself solve a (programming
contest) problem (the algorithm operating on it does), using an appropriately efficient data
structure for a problem may be the difference between passing or exceeding the problem’s
time limit. There can be many ways to organize the same data and sometimes one way is
better than the other in some contexts. We will illustrate this several times in this chapter.
A keen familiarity with the data structures and libraries discussed in this chapter is critically
important for understanding the algorithms that use them in subsequent chapters.

As stated in the preface of this book, we assume that you are familiar with the basic
data structures listed in Section 2.2-2.3 and thus we will not review them in this book.
Instead, we will simply highlight the fact that there exist built-in implementations for these
elementary data structures in the C++ STL and Java API'. If you feel that you are not
entirely familiar with any of the terms or data structures mentioned in Section 2.2-2.3,
please review those particular terms and concepts in the various reference books? that cover
them, including classics such as the “Introduction to Algorithms” [7], “Data Abstraction and
Problem Solving” [5, 54], “Data Structures and Algorithms” [12], etc. Continue reading this
book only when you understand at least the basic concepts behind these data structures.

Note that for competitive programming, you only need to know enough about these data
structures to be able to select and to use the correct data structures for each given contest
problem. You should understand the strengths, weaknesses, and time/space complexities of
typical data structures. The theory behind them is definitely good reading, but can often
be skipped or skimmed through, since the built-in libraries provide ready-to-use and highly
reliable implementations of otherwise complex data structures. This is not a good practice,
but you will find that it is often sufficient. Many (younger) contestants have been able
to utilize the efficient (with a O(logn) complexity for most operations) C++ STL map (or

'Even in this third edition, we still primarily use C++ code to illustrate implementation techniques. The
Java equivalents can be found in the supporting website of this book.

2Materials in Section 2.2-2.3 are usually covered in year one Data Structures CS curriculae. High school
students aspiring to take part in the IOI are encouraged to engage in independent study on such material.

33

2.1. OVERVIEW AND MOTIVATION (© Steven & Felix

Java TreeMap) implementations to store dynamic collections of key-data pairs without an
understanding that the underlying data structure is a balanced Binary Search Tree, or use
the C++ STL priority_queue (or Java PriorityQueue) to order a queue of items without
understanding that the underlying data structure is a (usually Binary) Heap. Both data
structures are typically taught in year one Computer Science curriculae.

This chapter is divided into three parts. Section 2.2 contains basic linear data structures
and the basic operations they support. Section 2.3 covers basic non-linear data structures
such as (balanced) Binary Search Trees (BST), (Binary) Heaps, and Hash Tables, as well
as their basic operations. The discussion of each data structure in Section 2.2-2.3 is brief,
with an emphasis on the important library routines that exist for manipulating the data
structures. However, special data structures that are common in programming contests,
such as bitmask and several bit manipulation techniques (see Figure 2.1) are discussed in
more detail. Section 2.4 contains more data structures for which there exist no built-in
implementation, and thus require us to build our own libraries. Section 2.4 has a more
in-depth discussion than Section 2.2-2.3.

Value-Added Features of this Book

As this chapter is the first that dives into the heart of competitive programming, we will
now take the opportunity to highlight several value-added features of this book that you will
see in this and the following chapters.

A key feature of this book is its accompanying collection of efficient, fully-implemented
examples in both C/C++ and Java that many other Computer Science books lack, stop-
ping at the ‘pseudo-code level” in their demonstration of data structures and algorithms.
This feature has been in the book since the very first edition. The important parts of
the source code have been included in the book® and the full source code is hosted at
sites.google.com/site/stevenhalim/home/material. The reference to each source file
is indicated in the body text as a box like the one shown below.

Source code: chx_yy_name.cpp/java

Another strength of this book is the collection of both written and programming exercises
(mostly supported by the UVa Online Judge [47] and integrated with uHunt—see Appendix
A). In the third edition, we have added many more written exercises. We have classified the
written exercises into non-starred and starred ones. The non-starred written exercises are
meant to be used mainly for self-checking purposes; solutions are given at the back of each
chapter. The starred written exercises can be used for extra challenges; we do not provide
solutions for these but may instead provide some helpful hints.

In the third edition, we have added visualizations* for many data structures and algo-
rithms covered in this book [27]. We believe that these visualizations will be a huge benefit
to the visual learners in our reader base. At this point in time (24 May 2013), the visualiza-
tions are hosted at: www.comp.nus.edu.sg/~stevenha/visualization. The reference to
each visualization is included in the body text as a box like the one shown below.

Visualization: www.comp.nus.edu.sg/~stevenha/visualization ‘

3However, we have chosen not to include code from Section 2.2-2.3 in the body text because they are
mostly ‘trivial’ for many readers, except perhaps for a few useful tricks.
4They are built with HTML5 canvas and JavaScript technology.

34

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

2.2 Linear DS with Built-in Libraries

A data structure is classified as a linear data structure if its elements form a linear sequence,
i.e. its elements are arranged from left to right (or top to bottom). Mastery of these basic
linear data structures below is critical in today’s programming contests.

e Static Array (native support in both C/C++ and Java)

This is clearly the most commonly used data structure in programming contests.
Whenever there is a collection of sequential data to be stored and later accessed us-
ing their indices, the static array is the most natural data structure to use. As the
maximum input size is usually mentioned in the problem statement, the array size
can be declared to be the maximum input size, with a small extra buffer (sentinel) for
safety—to avoid the unnecessary ‘off by one’ RTE. Typically, 1D, 2D, and 3D arrays
are used in programming contests—problems rarely require arrays of higher dimension.
Typical array operations include accessing elements by their indices, sorting elements,
performing a linear scan or a binary search on a sorted array.

e Dynamically-Resizeable Array: C++ STL vector (Java ArrayList (faster) or Vector)
This data structure is similar to the static array, except that it is designed to handle
runtime resizing natively. It is better to use a vector in place of an array if the size
of the sequence of elements is unknown at compile-time. Usually, we initialize the size
(reserve() or resize()) with the estimated size of the collection for better perfor-
mance. Typical C++ STL vector operations used in competitive programming include
push_back(), at (), the [] operator, assign(), clear(), erase(), and iterators for
traversing the contents of vectors.

Source code: ch2 01 array vector.cpp/java ‘

It is appropriate to discuss two operations commonly performed on Arrays: Sorting
and Searching. These two operations are well supported in C++ and Java.

There are many sorting algorithms mentioned in CS books [7, 5, 54, 12, 40, 58], e.g.

1. O(n?) comparison-based sorting algorithms: Bubble/Selection/Insertion Sort, etc.
These algorithms are (awfully) slow and usually avoided in programming contests,
though understanding them might help you solve certain problems.

2. O(nlogn) comparison-based sorting algorithms: Merge/Heap/Quick Sort, etc.
These algorithms are the default choice in programming contests as an O(nlogn)
complexity is optimal for comparison-based sorting. Therefore, these sorting algo-
rithms run in the ‘best possible’ time in most cases (see below for special purpose
sorting algorithms). In addition, these algorithms are well-known and hence we
do not need to ‘reinvent the wheel’>—we can simply use sort, partial_sort, or
stable_sort in C++ STL algorithm (or Collections.sort in Java) for stan-
dard sorting tasks. We only need to specify the required comparison function and
these library routines will handle the rest.

3. Special purpose sorting algorithms: O(n) Counting/Radix/Bucket Sort, etc.
Although rarely used, these special purpose algorithms are good to know as they
can reduce the required sorting time if the data has certain special characteristics.
For example, Counting Sort can be applied to integer data that lies in a small
range (see Section 9.32).

SHowever, sometimes we do need to ‘reinvent the wheel’ for certain sorting-related problems, e.g. the
Inversion Index problem in Section 9.14.

35

2.2. LINEAR DS WITH BUILT-IN LIBRARIES

(© Steven & Felix

There are generally three common methods to search for an item in an array:

1. O(n) Linear Search: Consider every element from index 0 to index n — 1 (avoid

this whenever possible).

2. O(logn) Binary Search: Use lower_bound, upper_bound, or binary_search in
C++ STL algorithm (or Java Collections.binarySearch). If the input array is
unsorted, it is necessary to sort the array at least once (using one of the O(nlogn)
sorting algorithm above) before executing one (or many) Binary Search(es).

3. O(1) with Hashing: This is a useful technique to use when fast access to known
values are required. If a suitable hash function is selected, the probability of a
collision to be made is negligibly small. Still, this technique is rarely used and we

can live without it® for most (contest) problems.

Visualization: www.comp.nus.edu.sg/~stevenha/visualization/sorting.html

Source code: ch2_02_algorithm_collections.cpp/java

e Array of Booleans: C++ STL bitset (Java BitSet)

If our array needs only to contain Boolean values (1/true and 0/false), we can use
an alternative data structure other than an array—a C++ STL bitset. The bitset
supports useful operations like reset (), set (), the [] operator and test().

Source code: ch5_06_primes.cpp/java, also see Section 5.5.1‘

e Bitmasks a.k.a. lightweight, small sets of Booleans (native support in C/C++4/Java)
An integer is stored in a computer’s memory as a sequence/string of bits. Thus, we can
use integers to represent a lightweight small set of Boolean values. All set operations
then involve only the bitwise manipulation of the corresponding integer, which makes
it a much more efficient choice when compared with the C++ STL vector<bool>,
bitset, or set<int> options. Such speed is important in competitive programming.
Some important operations that are used in this book are shown below.

Message: Check if j-th bit (from right)
IF DB }iset)

5=12 (dec) — 101010

§=3, 1<<3=8 (dec) — 001000

T=8 (dec) = 001000
[D

of S 1s on

S=(seta]ln=|:|bits)|[LSCne ” set Hicheckél[clear ” toggle]|j=|:|

Figure 2.1: Bitmask Visualization

1. Representation: A 32 (or 64)-bit signed integer for up to 32 (or 64) items”. With-
out a loss of generality, all examples below use a 32-bit signed integer called S.

SHowever, questions about hashing frequently appear in interviews for IT jobs.

"To avoid issues with the two’s complement representation, use a 32-bit/64-bit signed integer to represent

bitmasks of up to 30/62 items only, respectively.

36

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

Example: 5| 4| 3| 2] 1| 0 <- O-based indexing from right
32]16] 8| 4| 2| 1 <- power of 2

S = 34 (base 10) = 1] 0| 0l 0l 1| 0 (base 2)
F| El DI C| Bl A <- alternative alphabet label

In the example above, the integer S = 34 or 100010 in binary also represents a
small set {1, 5} with a O-based indexing scheme in increasing digit significance
(or {B, F'} using the alternative alphabet label) because the second and the sixth
bits (counting from the right) of S are on.

2. To multiply/divide an integer by 2, we only need to shift the bits in the integer
left /right, respectively. This operation (especially the shift left operation) is im-
portant for the next few examples below. Notice that the truncation in the shift
right operation automatically rounds the division-by-2 down, e.g. 17/2 = 8.

S = 34 (base 10) = 100010 (base 2)
S=8<<1=8%*2 =68 (base 10) = 1000100 (base 2)
S=8>>2=8/4=17 (base 10) = 10001 (base 2)
S=8>»>1=8/2= 8 (base 10) = 1000 (base 2) <- LSB is gone

(LSB = Least Significant Bit)

3. To set/turn on the j-th item (0-based indexing) of the set,
use the bitwise OR operation S |= (1 << j).

S = 34 (base 10) = 100010 (base 2)

j =3, 1< = 001000 <- bit ‘1’ is shifted to the left 3 times
———————— OR (true if either of the bits is true)

S = 42 (base 10) = 101010 (base 2) // update S to this new value 42

4. To check if the j-th item of the set is on,
use the bitwise AND operation T = S & (1 << j).
If T = 0, then the j-th item of the set is off.
If T !'= 0 (to be precise, T = (1 << j)), then the j-th item of the set is on.
See Figure 2.1 for one such example.

S = 42 (base 10) = 101010 (base 2)

j=3,1<<j = 001000 <- bit ‘1’ is shifted to the left 3 times
———————— AND (only true if both bits are true)

T = 8 (base 10) = 001000 (base 2) -> not zero, the 3rd item is on

S = 42 (base 10) = 101010 (base 2)

j =2, 1< = 000100 <- bit ‘1’ is shifted to the left 2 times
———————— AND

T = 0 (base 10) = 000000 (base 2) -> zero, the 2rd item is off

5. To clear/turn off the j-th item of the set,
use® the bitwise AND operation § &= ~(1 << j).

S = 42 (base 10) = 101010 (base 2)

j =1, "(1 << j) = 111101 <- ‘7’ is the bitwise NOT operation
———————— AND

S = 40 (base 10) = 101000 (base 2) // update S to this new value 40

8Use brackets a lot when doing bit manipulation to avoid accidental bugs due to operator precedence.

37

2.2. LINEAR DS WITH BUILT-IN LIBRARIES (© Steven & Felix

6. To toggle (flip the status of) the j-th item of the set,
use the bitwise XOR operation S "= (1 << j).

S = 40 (base 10)
j =2, (1 <3

101000 (base 2)

000100 <- bit ‘1’ is shifted to the left 2 times
———————— XOR <- true if both bits are different
101100 (base 2) // update S to this new value 44

S = 44 (base 10)

101000 (base 2)

001000 <- bit ‘1’ is shifted to the left 3 times
———————— XOR <- true if both bits are different
100000 (base 2) // update S to this new value 32

S = 40 (base 10)
j =3, (1 <«<3J

S

32 (base 10)

7. To get the value of the least significant bit that is on (first from the right),
use T = (S & (-9)).

S = 40 (base 10) = 000...000101000 (32 bits, base 2)

-5 = -40 (base 10) = 111...111011000 (two’s complement)
————————————————— AND

T = 8 (base 10) = 000...000001000 (3rd bit from right is on)

8. To turn on all bits in a set of size n, use S = (1 << n) - 1
(be careful with overflows).

Example for n = 3

S +1 =8 (base 10) 1000 <- bit ‘1’ is shifted to left 3 times

S = 7 (base 10) 111 (base 2)
Example for n = 5

S + 1 =32 (base 10) 100000 <- bit ‘1’ is shifted to left 5 times

S = 31 (base 10) 11111 (base 2)

Visualization: www.comp.nus.edu.sg/~stevenha/visualization/bitmask.html ‘

Source code: ch2 03 _bit manipulation.cpp/java

Many bit manipulation operations are written as preprocessor macros in our C/C++
example source code (but written plainly in our Java example code since Java does
not support macros).

e Linked List: C+4 STL list (Java LinkedList)
Although this data structure almost always appears in data structure and algorithm
textbooks, the Linked List is usually avoided in typical (contest) problems. This is due
to the inefficiency in accessing elements (a linear scan has to be performed from the
head or the tail of a list) and the usage of pointers makes it prone to runtime errors
if not implemented properly. In this book, almost all forms of Linked List have been
replaced by the more flexible C++ STL vector (Java Vector).

38

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

The only exception is probably UVa 11988 - Broken Keyboard (a.k.a. Beiju Text)—
where you are required to dynamically maintain a (linked) list of characters and effi-
ciently insert a new character anywhere in the list, i.e. at front (head), current, or back
(tail) of the (linked) list. Out of 1903 UVa problems that the authors have solved, this
is likely to be the only pure linked list problem we have encountered thus far.

Stack: C++ STL stack (Java Stack)

This data structure is often used as part of algorithms that solve certain problems (e.g.
bracket matching in Section 9.4, Postfix calculator and Infix to Postfix conversion in
Section 9.27, finding Strongly Connected Components in Section 4.2.9 and Graham’s
scan in Section 7.3.7). A stack only allows for O(1) insertion (push) and O(1) deletion
(pop) from the top. This behavior is usually referred to as Last In First Out (LIFO) and
is reminiscent of literal stacks in the real world. Typical C++4 STL stack operations
include push() /pop() (insert/remove from top of stack), top() (obtain content from
the top of stack), and empty ().

Queue: C++ STL queue (Java Queue?)

This data structure is used in algorithms like Breadth First Search (BFS) in Section
4.2.2. A queue only allows for O(1) insertion (enqueue) from the back (tail) and O(1)
deletion (dequeue) from the front (head). This behavior is similarly referred to as
First In First Out (FIFO), just like actual queues in the real world. Typical C++
STL queue operations include push() /pop() (insert from back/remove from front of
queue), front () /back() (obtain content from the front/back of queue), and empty ().

Double-ended Queue (Deque): C++ STL deque (Java Deque'?)

This data structure is very similar to the resizeable array (vector) and queue above,
except that deques support fast O(1) insertions and deletions at both the beginning
and the end of the deque. This feature is important in certain algorithm, e.g. the
Sliding Window algorithm in Section 9.31. Typical C4++ STL deque operations in-
clude push back(), pop_front() (just like the normal queue), push_front() and
pop-back() (specific for deque).

Visualization: www.comp.nus.edu.sg/~stevenha/visualization/list.html

Source code: ch2 04 stack queue.cpp/java

Exercise 2.2.1*: Suppose you are given an unsorted array S of n integers. Solve each
of the following tasks below with the best possible algorithms that you can think of and
analyze their time complexities. Let’s assume the following constraints: 1 < n < 100K so
that O(n?) solutions are theoretically infeasible in a contest environment.

1.
2%,
3*.
4%,
5*.

6.

Determine if S contains one or more pairs of duplicate integers.

Given an integer v, find two integers a,b € S such that a + b = v.

Follow-up to Question 2: what if the given array S is already sorted?

Print the integers in S that fall between a range [a...b] (inclusive) in sorted order.
Determine the length of the longest increasing contiguous sub-array in S.

Determine the median (50th percentile) of S. Assume that n is odd.

9The Java Queue is only an interface that is usually instantiated with Java LinkedList.
19The Java Deque is also an interface. Deque is usually instantiated with Java LinkedList.

39

2.2. LINEAR DS WITH BUILT-IN LIBRARIES (© Steven & Felix

Exercise 2.2.2: There are several other ‘cool’ tricks possible with bit manipulation tech-
niques but these are rarely used. Please implement these tasks with bit manipulation:

1.

T*.

8*.

Obtain the remainder (modulo) of S when it is divided by N (N is a power of 2)
e.g. S = (7)10 % (4)10 = (111)2 % (100)2 = (11)2 = (3)10.

. Determine if S is a power of 2.

e.g. S = (7)1 = (111), is not a power of 2, but (8);p = (100), is a power of 2.
Turn off the last bit in S, e.g. S = (40);0 = (101000)5 — S = (32)19 = (100000)s.
Turn on the last zero in 5, e.g. S = (41);9 = (101001)y — S = (43)19 = (101011)s.

. Turn off the last consecutive run of ones in S

€.g. S = (39)10 = (100&)2 — S = (32)10 = (100@)2

Turn on the last consecutive run of zeroes in S
e.g. S = (36)10 = (1001@)2 — S = (39)10 = (1001&)2

Solve UVa 11173 - Grey Codes with a one-liner bit manipulation expression for each
test case, i.e. find the k-th Gray code.

Let’s reverse the UVa 11173 problem above. Given a gray code, find its position &
using bit manipulation.

Exercise 2.2.3%: We can also use a resizeable array (C++ STL vector or Java Vector) to
implement an efficient stack. Figure out how to achieve this. Follow up question: Can we
use a static array, linked list, or deque instead? Why or why not?

Exercise 2.2.4%: We can use a linked list (C++4 STL 1ist or Java LinkedList) to imple-
ment an efficient queue (or deque). Figure out how to achieve this. Follow up question: Can
we use a resizeable array instead? Why or why not?

Programming exercises involving linear data structures (and algorithms) with libraries:

e 1D Array Manipulation, e.g. array, C++ STL vector (or Java Vector/ArrayList)

1. UVa 00230 - Borrowers (a bit of string parsing, see Section 6.2; maintain list
of sorted books; sort key: author names first and if ties, by title; the input
size is small although not stated; we do not need to use balanced BST)

2. UVa 00394 - Mapmaker (any n-dimensional array is stored in computer mem-
ory as a single dimensional array; follow the problem description)

3. UVa 00414 - Machined Surfaces (get longest stretch of ‘B’s)

4. UVa 00467 - Synching Signals (linear scan, 1D boolean flag)

5. UVa 00482 - Permutation Arrays (you may need to use a string tokenizer—
see Section 6.2—as the size of the array is not specified)

6. UVa 00591 - Box of Bricks (sum all items; get the average; sum the total
absolute differences of each item from the average divided by two)

7. UVa 00665 - False Coin (use 1D boolean flags; all coins are initially potential
false coins; if ‘=", all coins on the left and right are not false coins; if ‘<’ or
‘>’ all coins not on the left and right are not false coins; check if there is
only one candidate false coin left at the end)

8. UVa 00755 - 487-3279 (Direct Addressing Table; convert the letters except
Q & Z to 2-9; keep ‘0’-'9” as 0-9; sort the integers; find duplicates if any)

40

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

9. UVa 10038 - Jolly Jumpers * (use 1D boolean flags to check [1..n — 1])
10. UVa 10050 - Hartals (1D boolean flag)
11. UVa 10260 - Soundex (Direct Addressing Table for soundex code mapping)
12. UVa 10978 - Let’s Play Magic (1D string array manipulation)
13. UVa 11093 - Just Finish it up (linear scan, circular array, a bit challenging)
14. UVa 11192 - Group Reverse (character array)
15. UVa 11222 - Only I did it (use several 1D arrays to simplify this problem)
16. UVa 11340 - Newspaper * (DAT; see Hashing in Section 2.3)
17. UVa 11496 - Musical Loop (store data in 1D array, count the peaks)
18. UVa 11608 - No Problem (use three arrays: created; required; available)

19. UVa 11850 - Alaska (for each integer location from 0 to 1322; can Brenda
reach (anywhere within 200 miles of) any charging stations?)

20. UVa 12150 - Pole Position (simple manipulation)

21. UVa 12356 - Army Buddies * (similar to deletion in doubly linked lists,
but we can still use a 1D array for the underlying data structure)

e 2D Array Manipulation
1. UVa 00101 - The Blocks Problem (‘stack’ like simulation; but we need to
access the content of each stack too, so it is better to use 2D array)

2. UVa 00434 - Matty’s Blocks (a kind of visibility problem in geometry, solvable
with using 2D array manipulation)

3. UVa 00466 - Mirror Mirror (core functions: rotate and reflect)

UVa 00541 - Error Correction (count the number of ‘1’s for each row/col; all
of them must be even; if 3 an error, check if it is on the same row and col)

UVa 10016 - Flip-flop the Squarelotron (tedious)

UVa 10703 - Free spots (use 2D boolean array of size 500 x 500)

UVa 10855 - Rotated squares * (string array, 90° clockwise rotation)
UVa 10920 - Spiral Tap * (simulate the process)

UVa 11040 - Add bricks in the wall (non trivial 2D array manipulation)
10. UVa 11349 - Symmetric Matrix (use long long to avoid issues)

11. UVa 11360 - Have Fun with Matrices (do as asked)

12. UVa 11581 - Grid Successors * (simulate the process)

13. UVa 11835 - Formula 1 (do as asked)

14. UVa 12187 - Brothers (simulate the process)

15. UVa 12291 - Polyomino Composer (do as asked, a bit tedious)

16. UVa 12398 - NumPuzz I (simulate backwards, do not forget to mod 10)

e C++ STL algorithm (Java Collections)

=

© ® N oo

1. UVa 00123 - Searching Quickly (modified comparison function, use sort)
UVa 00146 - ID Codes * (use next_permutation)

UVa 00400 - Unix ls (this command very frequently used in UNIX)

UVa 00450 - Little Black Book (tedious sorting problem)

UVa 00790 - Head Judge Headache (similar to UVa 10258)

UVa 00855 - Lunch in Grid City (sort, median)

UVa 01209 - Wordfish (LA 3173, Manila06) (STL next and prev permutation)

UVa 10057 - A mid-summer night ... (involves the median, use STL sort,
upper _bound, lower_bound and some checks)

e B A T o

41

2.2. LINEAR DS WITH BUILT-IN LIBRARIES (© Steven & Felix

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

UVa 10107 - What is the Median? * (find median of a growing/dynamic
list of integers; still solvable with multiple calls of nth_element in algorithm)

UVa 10194 - Football a.k.a. Soccer (multi-fields sorting, use sort)
UVa 10258 - Contest Scoreboard * (multi-fields sorting, use sort)

UVa 10698 - Football Sort (multi-fields sorting, use sort)

UVa 10880 - Colin and Ryan (use sort)

UVa 10905 - Children’s Game (modified comparison function, use sort)
UVa 11039 - Building Designing (use sort then count different signs)

UVa 11321 - Sort Sort and Sort (be careful with negative mod!)

UVa 11588 - Image Coding (sort simplifies the problem)

UVa 11777 - Automate the Grades (sort simplifies the problem)

UVa 11824 - A Minimum Land Price (sort simplifies the problem)

UVa 12541 - Birthdates (LA6148, HatYail2, sort, pick youngest and oldest)

e Bit Manipulation (both C++ STL bitset (Java BitSet) and bitmask)

—_

© 0NN

UVa 00594 - One Little, Two Little ... (manipulate bit string with bitset)
UVa 00700 - Date Bugs (can be solved with bitset)

UVa 01241 - Jollybee Tournament (LA 4147, Jakarta08, easy)

UVa 10264 - The Most Potent Corner * (heavy bitmask manipulation)

UVa 11173 - Grey Codes (D & C pattern or one liner bit manipulation)
UVa 11760 - Brother Arif, ... (separate row+col checks; use two bitsets)
UVa 11926 - Multitasking * (use 1M bitset to check if a slot is free)
UVa 11933 - Splitting Numbers * (an exercise for bit manipulation)

TOT 2011 - Pigeons (this problem becomes simpler with bit manipulation but
the final solution requires much more than that.)

e C++ STL 1list (Java LinkedList)

1.

UVa 11988 - Broken Keyboard ... * (rare linked list problem)

e C++ STL stack (Java Stack)

1.

UVa 00127 - “Accordian” Patience (shuffling stack)

2. UVa 00514 - Rails * (use stack to simulate the process)
3.
4. UVa 01062 - Containers * (LA 3752, WorldFinals Tokyo07, simulation

UVa 00732 - Anagram by Stack * (use stack to simulate the process)

with stack; maximum answer is 26 stacks; O(n) solution exists)

UVa 10858 - Unique Factorization (use stack to help solving this problem)
Also see: implicit stacks in recursive function calls and Postfix conver-
sion/evaluation in Section 9.27.

e C++ STL queue and deque (Java Queue and Deque)

1.

N e g o

UVa 00540 - Team Queue (modified ‘queue’)

UVa 10172 - The Lonesome Cargo ... * (use both queue and stack)
UVa 10901 - Ferry Loading III * (simulation with queue)

UVa 10935 - Throwing cards away I (simulation with queue)

UVa 11034 - Ferry Loading IV * (simulation with queue)

UVa 12100 - Printer Queue (simulation with queue)

UVa 12207 - This is Your Queue (use both queue and deque)
Also see: queues in BFS (see Section 4.2.2)

42

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

2.3 Non-Linear DS with Built-in Libraries

For some problems, linear storage is not the best way to organize data. With the efficient
implementations of non-linear data structures shown below, you can operate on the data in
a quicker fashion, thereby speeding up the algorithms that rely on them.

For example, if you need a dynamic'! collection of pairs (e.g. key — value pairs), using
C++ STL map below can provide you O(logn) performance for insertion/search/deletion
operations with just a few lines of code (that you still have to write yourself), whereas
storing the same information inside a static array of structs may require O(n) inser-
tion/search/deletion, and you will need to write the longer traversal code yourself.

e Balanced Binary Search Tree (BST): C++ STL map/set (Java TreeMap/TreeSet)
The BST is one way to organize data in a tree structure. In each subtree rooted at x,
the following BST property holds: Items on the left subtree of x are smaller than x
and items on the right subtree of x are greater than (or equal to) x. This is essentially
an application of the Divide and Conquer strategy (also see Section 3.3). Organizing
the data like this (see Figure 2.2) allows for O(logn) search(key), insert(key),
findMin() /findMax (), successor (key) /predecessor (key), and delete (key) since
in the worst case, only O(logn) operations are required in a root-to-leaf scan (see
(7, 5, 54, 12] for details). However, this only holds if the BST is balanced.

Binary Search Tree

Input:. Insert Search Delete Succ/Pred MinMax Inorder Random BST | Clear

Figure 2.2: Examples of BST

Implementing bug-free balanced BSTs such as the Adelson-Velskii Landis (AVL)'? or
Red-Black (RB)!'® Trees is a tedious task and is difficult to achieve in a time-constrained
contest environment (unless you have prepared a code library beforehand, see Section
9.29). Fortunately, C++ STL has map and set (and Java has TreeMap and TreeSet)
which are usually implementations of the RB Tree which guarantees that major BST
operations like insertions/searches/deletions are done in O(logn) time. By mastering
these two C++ STL template classes (or Java APIs), you can save a lot of precious
coding time during contests! The difference between these two data structures is simple:
the C++ STL map (and Java TreeMap) stores (key — data) pairs whereas the C++

"' The contents of a dynamic data structure is frequently modified via insert/delete/update operations.

12The AVL tree was the first self-balancing BST to be invented. AVL trees are essentially traditional
BSTs with an additional property: The heights of the two subtrees of any vertex in an AVL tree can differ
by at most one. Rebalancing operations (rotations) are performed (when necessary) during insertions and
deletions to maintain this invariant property, hence keeping the tree roughly balanced.

3The Red-Black tree is another self-balancing BST, in which every vertex has a color: red or black. In
RB trees, the root vertex, all leaf vertices, and both children of every red vertex are black. Every simple
path from a vertex to any of its descendant leaves contains the same number of black vertices. Throughout
insertions and deletions, an RB tree will maintain all these invariants to keep the tree balanced.

43

2.3.

NON-LINEAR DS WITH BUILT-IN LIBRARIES (© Steven & Felix

STL set (and Java TreeSet) only stores the key. For most (contest) problems, we use
a map (to really map information) instead of a set (a set is only useful for efficiently
determining the existence of a certain key). However, there is a small drawback. If we
use the library implementations, it becomes difficult or impossible to augment (add
extra information to) the BST. Please attempt Exercise 2.3.5% and read Section 9.29
for more details.

Visualization: www.comp.nus.edu.sg/~stevenha/visualization/bst.html ‘

Source code: ch2_ 05 map_set.cpp/java

Heap: C++ STL priority_queue (Java PriorityQueue)

The heap is another way to organize data in a tree. The (Binary) Heap is also a binary
tree like the BST, except that it must be a complete'® tree. Complete binary trees
can be stored efficiently in a compact 1-indexed array of size n + 1, which is often
preferred to an explicit tree representation. For example, the array A = {N/A, 90, 19,
36, 17, 3, 25, 1, 2, 7} is the compact array representation of Figure 2.3 with index 0
ignored. One can navigate from a certain index (vertex) i to its parent, left child, and
right child by using simple index manipulation: {%J, 2 x4, and 2 x ¢ 4 1, respectively.
These index manipulations can be made faster using bit manipulation techniques (see
Section 2.2): 1 >> 1,1 << 1,and (i << 1) + 1, respectively.

Instead of enforcing the BST property, the (Max) Heap enforces the Heap property:
in each subtree rooted at x, items on the left and right subtrees of x are smaller than
(or equal to) = (see Figure 2.3). This is also an application of the Divide and Conquer
concept (see Section 3.3). The property guarantees that the top (or root) of the heap
is always the maximum element. There is no notion of a ‘search’ in the Heap (unlike
BSTs). The Heap instead allows for the fast extraction (deletion) of the maximum
element: ExtractMax() and insertion of new items: Insert(v)—both of which can
be easily achieved by in a O(logn) root-to-leaf or leaf-to-root traversal, performing
swapping operations to maintain the (Max) Heap property whenever necessary (see
[7, 5, 54, 12] for details).

v = Insert{v) ExtractMax() heapSort() A = PEFGPEIRERVE] buildV1() buldV2() Reset

Figure 2.3: (Max) Heap Visualization

The (Max) Heap is a useful data structure for modeling a Priority Queue, where the
item with the highest priority (the maximum element) can be dequeued (ExtractMax())

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled.
All vertices in the last level must also be filled from left-to-right.

44

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

and a new item v can be enqueued (Insert(v)), both in O(logn) time. The imple-
mentation'® of priority_queue is available in the C++ STL queue library (or Java
PriorityQueue). Priority Queues are an important component in algorithms like
Prim’s (and Kruskal’s) algorithms for the Minimum Spanning Tree (MST) problem
(see Section 4.3), Dijkstra’s algorithm for the Single-Source Shortest Paths (SSSP)
problem (see Section 4.4.3), and the A* Search algorithm (see Section 8.2.5).

This data structure is also used to perform partial_sort in the C4++ STL algorithm
library. One possible implementation is by processing the elements one by one and
creating a Max!® Heap of k elements, removing the largest element whenever its size
exceeds k (k is the number of elements requested by user). The smallest & elements
can then be obtained in descending order by dequeuing the remaining elements in the
Max Heap. As each dequeue operation is O(log k), partial_sort has O(nlogk) time
complexity!”. When k& = n, this algorithm is equivalent to a heap sort. Note that
although the time complexity of a heap sort is also O(nlogn), heap sorts are often
slower than quick sorts because heap operations access data stored in distant indices
and are thus not cache-friendly.

Visualization: www.comp.nus.edu.sg/~stevenha/visualization/heap.html ‘

Source code: ch2_06_priority_queue.cpp/java

e Hash Table: C++11 STL unordered map'® (and Java HashMap/HashSet/HashTable)
The Hash Table is another non-linear data structure, but we do not recommend using
it in programming contests unless absolutely necessary. Designing a well-performing
hash function is often tricky and only the new C++11 has STL support for it (Java
has Hash-related classes).

Moreover, C++ STL maps or sets (and Java TreeMaps or TreeSets) are usually fast
enough as the typical input size of (programming contest) problems is usually not more
than 1M. Within these bounds, the O(1) performance of Hash Tables and O(log 1M
performance for balanced BSTs do not differ by much. Thus, we do not discuss Hash
Tables in detail in this section.

However, a simple form of Hash Tables can be used in programming contests. ‘Di-
rect Addressing Tables” (DATS) can be considered to be Hash Tables where the keys
themselves are the indices, or where the ‘hash function’ is the identity function. For
example, we may need to assign all possible ASCII characters [0-255] to integer values,
e.g. ‘a’ — ‘3, W — ‘10°, ..., ‘I’ = ‘13". For this purpose, we do not need the C++
STL map or any form of hashing as the key itself (the value of the ASCII character) is
unique and sufficient to determine the appropriate index in an array of size 256. Some
programming exercises involving DAT's are listed in the previous Section 2.2.

15The default C++ STL priority queue is a Max Heap (dequeuing yields items in descending key order)
whereas the default Java PriorityQueue is a Min Heap (yields items in ascending key order). Tips: A Max
Heap containing numbers can easily be converted into a Min Heap (and vice versa) by inserting the negated
keys. This is because negating a set of numbers will reverse their order of appearance when sorted. This
trick is used several times in this book. However, if the priority queue is used to store 32-bit signed integers,
an overflow will occur if —23! is negated as 23! — 1 is the maximum value of a 32-bit signed integer.

16The default partial_sort produces the smallest k elements in ascending order.

1"You may have noticed that the time complexity O(nlog k) where k is the output size and n is the input
size. This means that the algorithm is ‘output-sensitive’ since its running time depends not only on the
input size but also on the amount of items that it has to output.

18Note that C++11 is a new C++ standard, older compilers may not support it yet.

45

2.3.

NON-LINEAR DS WITH BUILT-IN LIBRARIES (© Steven & Felix

Exercise 2.3.1: Someone suggested that it is possible to store the key — value pairs
in a sorted array of structs so that we can use the O(logn) binary search for the
example problem above. Is this approach feasible? If no, what is the issue?

Exercise 2.3.2: We will not discuss the basics of BST operations in this book. Instead,
we will use a series of sub-tasks to verify your understanding of BST-related concepts.
We will use Figure 2.2 as an initial reference in all sub-tasks except sub-task 2.

1. Display the steps taken by search(71), search(7), and then search(22).

2. Starting with an empty BST, display the steps taken by insert (15), insert(23),
insert(6), insert(71), insert(50), insert(4), insert(7), and insert(5).

Display the steps taken by findMin() (and findMax()).
Indicate the inorder traversal of this BST. Is the output sorted?

Display the steps taken by successor(23), successor(7), and successor(71).

SR AN

Display the steps taken by delete(5) (a leaf), delete(71) (an internal node
with one child), and then delete(15) (an internal node with two children).

Exercise 2.3.3*%: Suppose you are given a reference to the root R of a binary tree
T containing n vertices. You can access a node’s left, right and parent vertices as
well as its key through its reference. Solve each of the following tasks below with the
best possible algorithms that you can think of and analyze their time complexities.
Let’s assume the following constraints: 1 < n < 100K so that O(n?) solutions are
theoretically infeasible in a contest environment.

1. Check if T' is a BST.
2*. Output the elements in 7" that are within a given range [a..b] in ascending order.

3*. Output the contents of the leaves of T'in descending order.

Exercise 2.3.4*: The inorder traversal (also see Section 4.7.2) of a standard (not
necessarily balanced) BST is known to produce the BST’s element in sorted order and
runs in O(n). Does the code below also produce the BST elements in sorted order?
Can it be made to run in a total time of O(n) instead of O(logn + (n — 1) x logn) =
O(nlogn)? If possible, how?

x = findMin(); output x
for (i = 1; 1 < n; i++) // is this loop 0(n log n)?
x = successor(x); output x

Exercise 2.3.5*: Some (hard) problems require us to write our own balanced Bi-
nary Search Tree (BST) implementations due to the need to augment the BST with
additional data (see Chapter 14 of [7]). Challenge: Solve UVa 11849 - CD which is a
pure balanced BST problem with your own balanced BST implementation to test its
performance and correctness.

Exercise 2.3.6: We will not discuss the basics of Heap operations in this book.
Instead, we will use a series of questions to verify your understanding of Heap concepts.

46

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

1. With Figure 2.3 as the initial heap, display the steps taken by Insert(26).
2. After answering question 1 above, display the steps taken by ExtractMax().

Exercise 2.3.7: Is the structure represented by a 1-based compact array (ignoring
index 0) sorted in descending order a Max Heap?

Exercise 2.3.8%: Prove or disprove this statement: “The second largest element in
a Max Heap with n > 3 distinct elements is always one of the direct children of the
root”. Follow up question: What about the third largest element? Where is/are the
potential location(s) of the third largest element in a Max Heap?

Exercise 2.3.9%: Given a 1-based compact array A containing n integers (1 < n <
100K) that are guaranteed to satisfy the Max Heap property, output the elements in
A that are greater than an integer v. What is the best algorithm?

Exercise 2.3.10%: Given an unsorted array S of n distinct integers (2k < n < 100000),
find the largest and smallest & (1 < k < 32) integers in S in O(nlogk). Note: For this
written exercise, assume that an O(nlogn) algorithm is not acceptable.

Exercise 2.3.11*: One heap operation not directly supported by the C++ STL
priority_queue (and Java PriorityQueue) is the UpdateKey(index, newKey) oper-
ation, which allows the (Max) Heap element at a certain index to be updated (increased
or decreased). Write your own binary (Max) Heap implementation with this operation.

Exercise 2.3.12%: Another heap operation that may be useful is the DeleteKey (index)
operation to delete (Max) Heap elements at a certain index. Implement this!

Exercise 2.3.13*: Suppose that we only need the DecreaseKey(index, newKey)
operation, i.e. an UpdateKey operation where the update always makes newKey smaller
than its previous value. Can we use a simpler approach than in Exercise 2.3.117 Hint:
Use lazy deletion, we will use this technique in our Dijkstra code in Section 4.4.3.

Exercise 2.3.14*: Is it possible to use a balanced BST (e.g. C++ STL set or Java
TreeSet) to implement a Priority Queue with the same O(logn) enqueue and dequeue
performance? If yes, how? Are there any potential drawbacks? If no, why?

Exercise 2.3.15%: Is there a better way to implement a Priority Queue if the keys are
all integers within a small range, e.g. [0...100]7 We are expecting an O(1) enqueue
and dequeue performance. If yes, how? If no, why?

Exercise 2.3.16: Which non-linear data structure should you use if you have to
support the following three dynamic operations: 1) many insertions, 2) many deletions,
and 3) many requests for the data in sorted order?

Exercise 2.3.17: There are M strings. N of them are unique (N < M). Which non-
linear data structure discussed in this section should you use if you have to index (label)
these M strings with integers from [0..N-1]7 The indexing criteria is as follows: The
first string must be given an index of 0; The next different string must be given index
1, and so on. However, if a string is re-encountered, it must be given the same index
as its earlier copy! One application of this task is in constructing the connection graph
from a list of city names (which are not integer indices!) and a list of highways between
these cities (see Section 2.4.1). To do this, we first have to map these city names into
integer indices (which are far more efficient to work with).

47

2.3. NON-LINEAR DS WITH BUILT-IN LIBRARIES (© Steven & Felix

Programming exercises solvable with library of non-linear data structures:

e C++ STL map (and Java TreeMap)

1. UVa 00417 - Word Index (generate all words, add to map for auto sorting)
UVa 00484 - The Department of ... (maintain frequency with map)

UVa 00860 - Entropy Text Analyzer (frequency counting)

UVa 00939 - Genes (map child name to his/her gene and parents’ names)
UVa 10132 - File Fragmentation (N = number of fragments, B = total bits of
all fragments divided by N/2; try all 2 x N? concatenations of two fragments
that have length B; report the one with highest frequency; use map)

UVa 10138 - CDVII (map plates to bills, entrace time and position)

UVa 10226 - Hardwood Species * (use hashing for a better performance)

o N

UVa 10282 - Babelfish (a pure dictionary problem; use map)

UVa 10295 - Hay Points (use map to deal with Hay Points dictionary)
10. UVa 10686 - SQF Problem (use map to manage the data)

11. UVa 11239 - Open Source (use map and set to check previous strings)

© o N o

12. UVa 11286 - Conformity * (use map to keep track of the frequencies)
13. UVa 11308 - Bankrupt Baker (use map and set to help manage the data)
14. UVa 11848 - Ezhibition (use map and set to check uniqueness)

15. UVa 11572 - Unique Snowflakes * (usemap to record the occurrence in-
dex of a certain snowflake size; use this to determine the answer in O(nlogn))

16. UVa 11629 - Ballot evaluation (use map)

17. UVa 11860 - Document Analyzer (use set and map, linear scan)

18. UVa 11917 - Do Your Own Homework (use map)

19. UVa 12504 - Updating a Dictionary (use map; string to string; a bit tedious)

20. UVa 12592 - Slogan Learning of Princess (use map; string to string)
Also check frequency counting section in Section 6.3.

o C++ STL set (Java TreeSet)

1. UVa 00501 - Black Box (use multiset with efficient iterator manipulation)
UVa 00978 - Lemmings Battle * (simulation, use multiset)

UVa 10815 - Andy’s First Dictionary (use set and string)

UVa 11062 - Andy’s Second Dictionary (similar to UVa 10815, with twists)
UVa 11136 - Hoax or what * (use multiset)

UVa 11849 - CD * (use set to pass the time limit, better: use hashing!)
7. UVa 12049 - Just Prune The List (multiset manipulation)

> o W

e C++ STL priority_queue (Java PriorityQueue)
1. UVa 01203 - Argus * (LA 3135, Beijing04; use priority.queue)
2. UVa 10954 - Add All * (use priority_queue, greedy)
3. UVa 11995 - I Can Guess ... * (stack, queue, and priority_queue)

Also see the usage of priority_queue for topological sorts (see Section 4.2.1),
Kruskal’s'? (see Section 4.3.2), Prim’s (see Section 4.3.3), Dijkstra’s (see
Section 4.4.3), and the A* Search algorithms (see Section 8.2.5)

19This is another way to implement the edge sorting in Kruskal’s algorithm. Our (C+4+) implementation
shown in Section 4.3.2 simply uses vector + sort instead of priority_queue (a heap sort).

48

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

2.4 Data Structures with Our Own Libraries

As of 24 May 2013, important data structures shown in this section do not have built-in
support yet in C++ STL or Java API. Thus, to be competitive, contestants should prepare
bug-free implementations of these data structures. In this section, we discuss the key ideas
and example implementations (see the given source code too) of these data structures.

2.4.1 Graph

The graph is a pervasive structure which appears in many Computer Science problems. A
graph (G = (V, E)) in its basic form is simply a set of vertices (V') and edges (FE; storing
connectivity information between vertices in V). Later in Chapter 3, 4, 8, and 9, we will
explore many important graph problems and algorithms. To prepare ourselves, we will
discuss three basic ways (there are a few other rare structures) to represent a graph G' with
V vertices and E edges in this subsection®.

Adjancency Matrix Adjacency List Edge List

8123456 8:12 e: @1 ~
@ ee2588080 1: 823 1: @2
1287168660 2: 814 2: 18
257804060 3: 14 3z g2
@ jel1ee3ioeo A2 35, 4: 13
46684380968 Sezd b 5z 2@
5868688988 6:5 6: 21
6BEBBBEG 7: 24
g8: 31
9: 34
10: 4 2

11: 4 3 d

Figure 2.4: Graph Data Structure Visualization

A). The Adjacency Matrix, usually in the form of a 2D array (see Figure 2.4).

In (programming contest) problems involving graphs, the number of vertices V' is usually
known. Thus we can build a ‘connectivity table” by creating a static 2D array: int
AdjMat[V]1[V]. This has an O(V?) space?’ complexity. For an unweighted graph, set
AdjMat [i] [j] to a non-zero value (usually 1) if there is an edge between vertex i-j or
zero otherwise. For a weighted graph, set AdjMat[i] [j] = weight(i,j) if there is an
edge between vertex i-j with weight (i,j) or zero otherwise. Adjacency Matrix cannot
be used to store multigraph. For a simple graph without self-loops, the main diagonal
of the matrix contains only zeroes, i.e. AdjMat[i] [1] = 0, Vi € [0..V-1].

An Adjacency Matrix is a good choice if the connectivity between two vertices in a
small dense graph is frequently required. However, it is not recommended for large
sparse graphs as it would require too much space (O(V?)) and there would be many
blank (zero) cells in the 2D array. In a competitive setting, it is usually infeasible to
use Adjacency Matrices when the given V' is larger than ~ 1000. Another drawback
of Adjacency Matrix is that it also takes O(V') time to enumerate the list of neighbors
of a vertex v—an operation common to many graph algorithms—even if a vertex only
has a handful of neighbors. A more compact and efficient graph representation is the
Adjacency List discussed below.

20The most appropriate notation for the cardinality of a set S is |S|. However, in this book, we will often
overload the meaning of V or F to also mean |V| or |E|, depending on the context.

2I'We differentiate between the space and time complexities of data structures. The space complexity is
an asymptotic measure of the memory requirements of a data structure whereas the time complexity is an
asymptotic measure of the time taken to run a certain algorithm or an operation on the data structure.

49

2.4. DATA STRUCTURES WITH OUR OWN LIBRARIES (© Steven & Felix

B)

. The Adjacency List, usually in the form of a vector of vector of pairs (see Figure 2.4).
Using the C++ STL: vector<vii> AdjList, with vii defined as in:
typedef pair<int, int> ii; typedef vector<ii> vii; // data type shortcuts
Using the Java API: Vector< Vector < IntegerPair > > AdjList.
IntegerPair is a simple Java class that contains a pair of integers like ii above.

In Adjacency Lists, we have a vector of vector of pairs, storing the list of neighbors
of each vertex u as ‘edge information’ pairs. Each pair contains two pieces of informa-
tion, the index of the neighbouring vertex and the weight of the edge. If the graph is
unweighted, simply store the weight as 0, 1, or drop the weight attribute®? entirely. The
space complexity of Adjacency List is O(V + E) because if there are E bidirectional
edges in a (simple) graph, this Adjacency List will only store 2E ‘edge information’
pairs. As F is usually much smaller than V x (V —1)/2 = O(V?)-the maximum num-
ber of edges in a complete (simple) graph, Adjacency Lists are often more space-efficient
than Adjacency Matrices. Note that Adjacency List can be used to store multigraph.

With Adjacency Lists, we can also enumerate the list of neighbors of a vertex v efficiently.
If v has k neighbors, the enumeration will require O(k) time. Since this is one of the
most common operations in most graph algorithms, it is advisable to use Adjacency
Lists as your first choice of graph representation. Unless otherwise stated, most graph
algorithms discussed in this book use the Adjacency List.

. The Edge List, usually in the form of a vector of triples (see Figure 2.4).
Using the C++ STL: vector< pair<int, ii> > EdgeList.
Using the Java API: Vector< IntegerTriple > EdgeList.
IntegerTriple is a class that contains a triple of integers like pair<int, ii> above.

In the Edge List, we store a list of all £ edges, usually in some sorted order. For
directed graphs, we can store a bidirectional edge twice, one for each direction. The
space complexity is clearly O(F). This graph representation is very useful for Kruskal’s
algorithm for MST (Section 4.3.2), where the collection of undirected edges need to
be sorted®® by ascending weight. However, storing graph information in Edge List
complicates many graph algorithms that require the enumeration of edges incident to a
vertex.

Visualization: www.comp.nus.edu.sg/~stevenha/visualization/graphds.html

Source code: ch2_07_graph_ds.cpp/java

Implicit Graph

Some graphs do not have to be stored in a graph data structure or explicitly generated for
the graph to be traversed or operated upon. Such graphs are called implicit graphs. You
will encounter them in the subsequent chapters. Implicit graphs can come in two flavours:

1. The edges can be determined easily.

Example 1: Navigating a 2D grid map (see Figure 2.5.A). The vertices are the cells in
the 2D character grid where ‘. represents land and ‘#’ represents an obstacle. The
edges can be determined easily: There is an edge between two neighboring cells in the

22For simplicity, we will always assume that the second attribute exists in all graph implementations in
this book although it is not always used.

2

3pair objects in C++ can be easily sorted. The default sorting criteria is to sort on the first item and

then the second item for tie-breaking. In Java, we can write our own IntegerPair/IntegerTriple class
that implements Comparable.

50

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

grid if they share an N/S/E/W border and if both are ‘" (see Figure 2.5.B).

Example 2: The graph of chess knight movements on an 8 x 8 chessboard. The vertices
are the cells in the chessboard. Two squares in the chessboard have an edge between
them if they differ by two squares horizontally and one square vertically (or two squares
vertically and one square horizontally). The first three rows and four columns of a
chessboard are shown in Figure 2.5.C (many other vertices and edges are not shown).

2. The edges can be determined with some rules.
Example: A graph contains N vertices ([1..N]). There is an edge between two vertices
i and j if (i+j) is a prime. See Figure 2.5.D that shows such a graph with N =5 and
several more examples in Section 8.2.3.

He

Figure 2.5: Implicit Graph Examples

Exercise 2.4.1.1*: Create the Adjacency Matrix, Adjacency List, and Edge List represen-
tations of the graphs shown in Figure 4.1 (Section 4.2.1) and in Figure 4.9 (Section 4.2.9).
Hint: Use the graph data structure visualization tool shown above.

Exercise 2.4.1.2%: Given a (simple) graph in one representation (Adjacency Matrix/AM,
Adjacency List/AL, or Edge List/EL), convert it into another graph representation in the
most efficient way possible! There are 6 possible conversions here: AM to AL, AM to EL,
AL to AM, AL to EL, EL to AM, and EL to AL.

Exercise 2.4.1.3: If the Adjacency Matrix of a (simple) graph has the property that it is
equal to its transpose, what does this imply?

Exercise 2.4.1.4%: Given a (simple) graph represented by an Adjacency Matrix, perform
the following tasks in the most efficient manner. Once you have figured out how to do this
for Adjacency Matrices, perform the same task with Adjacency Lists and then Edge Lists.

1. Count the number of vertices V' and directed edges E (assume that a bidirectional
edge is equivalent to two directed edges) of the graph.

2*. Count the in-degree and the out-degree of a certain vertex v.
3*. Transpose the graph (reverse the direction of each edges).

4*. Check if the graph is a complete graph K,. Note: A complete graph is a simple
undirected graph in which every pair of distinct vertices is connected by a single edge.

5*. Check if the graph is a tree (a connected undirected graph with £ =V — 1 edges).

6*. Check if the graph is a star graph S;. Note: A star graph Sj is a complete bipartite
K graph. It is a tree with only one internal vertex and £ leaves.

Exercise 2.4.1.5%: Research other possible methods of representing graphs other than the
ones discussed above, especially for storing special graphs!

ol

2.4. DATA STRUCTURES WITH OUR OWN LIBRARIES (© Steven & Felix

2.4.2 Union-Find Disjoint Sets

The Union-Find Disjoint Set (UFDS) is a data structure to model a collection of disjoint sets
with the ability to efficiently?—in ~ O(1)—determine which set an item belongs to (or to
test whether two items belong to the same set) and to unite two disjoint sets into one larger
set. Such data structure can be used to solve the problem of finding connected components
in an undirected graph (Section 4.2.3). Initialize each vertex to a separate disjoint set, then
enumerate the graph’s edges and join every two vertices/disjoint sets connected by an edge.
We can then test if two vertices belong to the same component/set easily.

These seemingly simple operations are not efficiently supported by the C++ STL set
(and Java TreeSet), which is not designed for this purpose. Having a vector of sets and
looping through each one to find which set an item belongs to is expensive! C++ STL
set_union (in algorithm) will not be efficient enough although it combines two sets in
linear time as we still have to deal with shuffling the contents of the vector of sets! To
support these set operations efficiently, we need a better data structure—the UFDS.

The main innovation of this data structure is in choosing a representative ‘parent’ item
to represent a set. If we can ensure that each set is represented by only one unique item,
then determining if items belong to the same set becomes far simpler: The representative
‘parent’ item can be used as a sort of identifier for the set. To achieve this, the Union-Find
Disjoint Set creates a tree structure where the disjoint sets form a forest of trees. Each tree
corresponds to a disjoint set. The root of the tree is determined to be the representative
item for a set. Thus, the representative set identifier for an item can be obtained simply
by following the chain of parents to the root of the tree, and since a tree can only have one
root, this representative item can be used as a unique identifier for the set.

To do this efficiently, we store the index of the parent item and (the upper bound of)
the height of the tree of each set (vi p and vi rank in our implementation). Remember
that vi is our shortcut for a vector of integers. p[i] stores the immediate parent of item 1i.
If item i is the representative item of a certain disjoint set, then p[i] = i, i.e. a self-loop.
rank[i] yields (the upper bound of) the height of the tree rooted at item i.

In this section, we will use 5 disjoint sets {0, 1, 2, 3, 4} to illustrate the usage of this
data structure. We initialize the data structure such that each item is a disjoint set by itself
with rank 0 and the parent of each item is initially set to itself.

To unite two disjoint sets, we set the representative item (root) of one disjoint set to be
the new parent of the representative item of the other disjoint set. This effectively merges
the two trees in the Union-Find Disjoint Set representation. As such, unionSet (i, j) will
cause both items ‘i’ and ‘j’ to have the same representative item—directly or indirectly. For
efficiency, we can use the information contained in vi rank to set the representative item
of the disjoint set with higher rank to be the new parent of the disjoint set with lower rank,
thereby minimizing the rank of the resulting tree. If both ranks are the same, we arbitrarily
choose one of them as the new parent and increase the resultant root’s rank. This is the
‘union by rank’ heuristic. In Figure 2.6, top, unionSet (0, 1) sets p[0] to 1 and rank[1]
to 1. In Figure 2.6, middle, unionSet (2, 3) sets p[2] to 3 and rank[3] to 1.

For now, let’s assume that function findSet (i) simply calls findSet(p[i]) recursively
to find the representative item of a set, returning findSet (p[i]) whenever p[i] != iand i
otherwise. In Figure 2.6, bottom, when we call unionSet (4, 3), we have rank [findSet (4)]
= rank[4] = 0 which is smaller than rank[findSet(3)] = rank[3] = 1, so we set p[4]
= 3 without changing the height of the resulting tree—this is the ‘union by rank’ heuristic

24 M operations of this UFDS data structure with ‘path compression’ and ‘union by rank’ heuristics run
in O(M x «(n)). However, since the inverse Ackermann function a(n) grows very slowly, i.e. its value is just
less than 5 for practical input size n < 1M in programming contest setting, we can treat a(n) as constant.

52

CHAPTER 2. DATA STRUCTURES AND LIBRARIES (© Steven & Felix

pl1]=1
rank[1] =1

p2=2 plEI=3 pl4=4
ﬂﬂﬂa rank[2] = 0 | | rank[3] =0 | |rank[4] = 0
rank[0] =0

p[1]=1
rank[1] =1

~ p[2]1=3 pl4] = 4
ranﬁ{g]l = (1) rank[2] = 0 rank[4] = 0
p[1]=1 p[3] =3
rank[1] =1 rank[3] = 1
_ p[2] =3 41=3
p[0] =1 rank[2] = 0 rank[4] = 0

rank[0] =0

Figure 2.6: unionSet (0, 1) — (2, 3) — (4, 3) and isSameSet (0, 4)

at work. With the heuristic, the path taken from any node to the representative item by
following the chain of ‘parent’ links is effectively minimized.

In Figure 2.6, bottom, isSameSet (0, 4) demonstrates another operation for this data
structure. This function isSameSet(i, j) simply calls findSet (i) and findSet(j) and
checks if both refer to the same representative item. If they do, then ‘i’ and ‘j’ both belong
to the same set. Here, we see that findSet(0) = findSet(p[0]) = findSet(1) = 1 is
not the same as findSet(4)= findSet(p[4]) = findSet(3) = 3. Therefore item 0 and
item 4 belongs to different disjoint sets.

p(3] =3
rank[3] = 2

“Path
Compression”
p[11=3
rank[1] = 1
p0]=1
rank[0] = O

p[2]=3 pl4]=3 plol=3 p[1]=3 pl21=3 pl41=3
rank[2] = 0 rank[4]=0 | rank[0]=0 rank[1]=1 rank[2]=0 rank[4]=0

Figure 2.7: unionSet (0, 3) — findSet(0)

There is a technique that can vastly speed up the findSet (i) function: Path compression.
Whenever we find the representative (root) item of a disjoint set by following the chain of
‘parent’ links from a given item, we can set the parent of all items traversed to point directly
to the root. Any subsequent calls to findSet (i) on the affected items will then result in
only one link being traversed. This changes the structure of the tree (to make findSet (i)
more efficient) but yet preserves the actual constitution of the disjoint set. Since this will
occur any time findSet (i) is called, the combined effect is to render the runtime of the
findSet (i) operation to run in an extremely efficient amortized O(M x «a(n)) time.

In Figure 2.7, we demonstrate this ‘path compression’. First, we call unionSet (0, 3).
This time, we set p[1] = 3 and update rank[3] = 2. Now notice that p[0] is unchanged,
i.e. p[0] = 1.